On a monotonic trigonometric sum

被引:14
作者
Brown, G [1 ]
Koumandos, S [1 ]
机构
[1] UNIV CYPRUS, DEPT MATH & STAT, NICOSIA, CYPRUS
来源
MONATSHEFTE FUR MATHEMATIK | 1997年 / 123卷 / 02期
关键词
positive trigonometric sums; Fourier series;
D O I
10.1007/BF01305965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By establishing a cosine analogue of a result of Askey and Steinig on a monotonic sine sum, this paper sharpens and unifies several results associated with Young's inequality for the partial sums of Sigma k(-1) cos k theta.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1926, INTRO THEORY INFINIT
[2]   MONOTONIC TRIGONOMETRIC SUM [J].
ASKEY, R ;
STEINIG, J .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) :357-365
[3]   POSITIVITY OF SOME BASIC COSINE SUMS [J].
BROWN, G ;
WANG, KY ;
WILSON, DC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 :383-391
[4]   POSITIVE SUMS OF CLASSICAL ORTHOGONAL POLYNOMIALS [J].
GASPER, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) :423-447
[5]   The Gibbs occurrence and the trigonometrical totals sin x+1/2 sin 2x ++1/n sin nx [J].
Gronwall, TH .
MATHEMATISCHE ANNALEN, 1912, 72 :228-243
[6]  
JACKSON D, 1991, REND CIRC MATH PALER, V32, P257
[7]  
MILOVANOVIC GV, 1994, TOPICS POLYNOMIALS
[8]  
Rainville E., 1960, Special Functions
[9]  
TOMIC M, 1958, GLAS SRPSKE AN, V232, P29
[10]  
Young WH, 1913, P LOND MATH SOC, V11, P357