Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function

被引:53
作者
Desposito, M. A. [1 ,2 ]
Vinales, A. D. [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
关键词
diffusion; stochastic processes; viscoelasticity; SINGLE-PARTICLE TRACKING; ANOMALOUS DIFFUSION; MICRORHEOLOGY; DYNAMICS; MOTION;
D O I
10.1103/PhysRevE.80.021111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theoretical framework for analyzing stochastic data from single-particle tracking in viscoelastic materials and under the influence of a trapping potential is presented. Starting from a generalized Langevin equation, we found analytical expressions for the two-time dynamics of a particle subjected to a harmonic potential. The mean-square displacement and the velocity autocorrelation function of the diffusing particle are given in terms of the time lag. In particular, we investigate the subdiffusive case. Using a power-law memory kernel, exact expressions for the mean-square displacement and the velocity autocorrelation function are obtained in terms of Mittag-Leffler functions and their derivatives. The behaviors for short-, intermediate-, and long-time lags are investigated in terms of the involved parameters. Finally, the validity of usual approximations is examined.
引用
收藏
页数:7
相关论文
共 45 条
[21]   Probe size effects on the microrheology of associating polymer solutions [J].
Lu, Q ;
Solomon, MJ .
PHYSICAL REVIEW E, 2002, 66 (06) :11
[22]   Direct observation of nondiffusive motion of a Brownian particle -: art. no. 160601 [J].
Lukic, B ;
Jeney, S ;
Tischer, C ;
Kulik, AJ ;
Forró, L ;
Florin, EL .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[23]   Motion of a colloidal particle in an optical trap [J].
Lukic, Branimir ;
Jeney, Sylvia ;
Sviben, Zeljko ;
Kulik, Andrzej J. ;
Florin, Ernst-Ludwig ;
Forro, Laszlo .
PHYSICAL REVIEW E, 2007, 76 (01)
[24]   Anomalous diffusion through coupling to a fractal environment: Microscopic derivation of the "whip-back" effect [J].
Lutz, E .
EUROPHYSICS LETTERS, 2001, 54 (03) :293-299
[25]   On Mittag-Leffler-type functions in fractional evolution processes [J].
Mainardi, F ;
Gorenflo, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :283-299
[26]   Particle tracking microrheology of complex fluids [J].
Mason, TG ;
Ganesan, K ;
vanZanten, JH ;
Wirtz, D ;
Kuo, SC .
PHYSICAL REVIEW LETTERS, 1997, 79 (17) :3282-3285
[27]   OPTICAL MEASUREMENTS OF FREQUENCY-DEPENDENT LINEAR VISCOELASTIC MODULI OF COMPLEX FLUIDS [J].
MASON, TG ;
WEITZ, DA .
PHYSICAL REVIEW LETTERS, 1995, 74 (07) :1250-1253
[28]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[29]   Simple model of cytoskeletal fluctuations [J].
Metzner, C. ;
Raupach, C. ;
Zitterbart, D. Paranhos ;
Fabry, B. .
PHYSICAL REVIEW E, 2007, 76 (02)
[30]   Optical trapping [J].
Neuman, KC ;
Block, SM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (09) :2787-2809