An Improved Fuzzy C-Means Algorithm for Brain MRI Image Segmentation

被引:0
作者
Li, Min [1 ]
Zhang, Limei [1 ]
Xiang, Zhikang [1 ]
Castillo, Edward [2 ]
Guerrero, Thomas [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Beaumont Hlth Syst, Dept Radiat Oncol, Royal Oak, MI 48073 USA
来源
PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1 | 2016年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
image segmentation; fuzzy c-means (FCM) clustering; brain magnetic resonance imaging(MRF); LEVEL SET METHOD;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmentation of brain magnetic resonance imaging (MRI) data plays an important role in the computer-aided diagnosis and neuroscience research. Fuzzy c-means (FCM) clustering algorithm is one of the most usually used techniques for brain MRI image segmentation because of its fuzzy nature. However, the conventional FCM method fails to carry out segmentation well enough due to intensity inhomogeneity in MRI data. To overcome this issue, we propose an improved algorithm based on FCM clustering for segmentation of brain MRI data. Specifically, we modify the conventional FCM algorithm to allow for intensity inhomogeneity by introducing the regularization of the neighborhood influence and bias field. Results show that our proposed algorithm obtains reasonable segmentation of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) from MRI data, which is superior to the expectation-maximization (EM) and conventional FCM methods.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [21] A Novel Algorithm by Incorporating Chaos Optimization and Improved Fuzzy C-Means for Image Segmentation
    Zhu Z.-L.
    Liu Y.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (05): : 975 - 984
  • [22] Spatial α-Trimmed Fuzzy C-Means Algorithm to Image Segmentation
    Vela-Rincon, Virna V.
    Mujica-Vargas, Dante
    Mejia Lavalle, Manuel
    Magadan Salazar, Andrea
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 118 - 128
  • [23] Modified Fast Fuzzy C-means Algorithm For Image Segmentation
    Guo, Rong-chuan
    Ye, Shui-sheng
    Quan, Min
    Shi, Hai-xia
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, VOL II, 2009, : 39 - 43
  • [24] IMAGE SEGMENTATION BY A ROBUST GENERALIZED FUZZY C-MEANS ALGORITHM
    Zhang, Hui
    Wu, Q. M. Jonathan
    Thanh Minh Nguyen
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4024 - 4028
  • [25] Image segmentation by generalized hierarchical fuzzy C-means algorithm
    Zheng, Yuhui
    Jeon, Byeungwoo
    Xu, Danhua
    Wu, Q. M. Jonathan
    Zhang, Hui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (02) : 961 - 973
  • [26] Application of Fuzzy C-means clustering algorithm in image segmentation
    Guo, Rongchuan
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 84 - 88
  • [27] An Image Segmentation Algorithm Based On Fuzzy C-Means Clustering
    Zhang Xinbo
    Jiang Li
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 123 - 126
  • [28] An Image Segmentation Algorithm Based on Fuzzy C-Means Clustering
    Zhang, Xin-bo
    Jiang, Li
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 22 - 26
  • [29] Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
    Ji, Zexuan
    Liu, Jinyao
    Cao, Guo
    Sun, Quansen
    Chen, Qiang
    PATTERN RECOGNITION, 2014, 47 (07) : 2454 - 2466
  • [30] Probabilistic intuitionistic fuzzy c-means algorithm with spatial constraint for human brain MRI segmentation
    Solanki, Rinki
    Kumar, Dhirendra
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (22) : 33663 - 33692