Secondary structure features of mitochondrial ribosomal RNAs (mt-rRNAs) of bony fishes were investigated by a DNA sequence alignment approach. The small subunit (SSU) and large subunit (LSU) mt-rRNA genes were found to contain several additional variable regions compared to their mammalian counterparts. Fish mt-LSU rRNA genes; were found to be longer than the mammalians due to increased length of some of the variable regions. The 5' and 3' ends of Atlantic cod mt-rRNAs were precisely mapped. The 3' ends of mt-SSU rRNAs were found to be homogenous and mono-adenylated, whereas that of the mt-LSU rRNAs were heterogenous and oligo-adenylated. The 5' ends of mt-SSU rRNAs appeared to be heterogenous, corresponding to the presumed first and second positions of the gene. Sequences of the central domain and the D-domain of the mt-SSU and mt-LSU rRNA genes, respectively, were determined and characterized for 11 gadiform species (representing the families Gadidae, Lotidae, Ranicipitidae, Merlucciidae, Phycidae, and Macrouridae) and one Lophiidae species. Detailed secondary structure models of the RNA regions are presented for the Atlantic cod (Gadus morhua) and Roundnose grenadier (Coryphaeonides rupestris). Saturation plots revealed that DNA nucleotide positions corresponding to unpaired RNA regions become saturated with transitions at sequence divergence levels about 0.15. Phylogenetic analyses revealed some aspects of gadiform relationships. Gadidae was identified as the most derived of the gadiform families. Lotidae was found to be the family closest related to Gadidae, and Ranicipitidae was also recognized as a derived gadiform taxon. (C) 2002 Elsevier Science (USA). All rights reserved.