ON RIESZ TYPE INEQUALITIES FOR HARMONIC MAPPINGS ON THE UNIT DISK

被引:23
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 81000, Montenegro
关键词
Subharmonic functions; harmonic mappings; CONSTANTS;
D O I
10.1090/tran/7808
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some sharp inequalities for complex harmonic functions on the unit disk. The results extend a M. Riesz conjugate function theorem and some well-known estimates for holomorphic functions. We apply some of results to the isoperimetric inequality for harmonic mappings.
引用
收藏
页码:4031 / 4051
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]  
[Anonymous], 1984, ERGEBNISSE MATH EMAT
[3]  
[Anonymous], 2002, TRIGONOMETRIC SERIES, DOI DOI 10.1017/CBO9781316036587
[4]  
Axler Sheldon, 1992, GRADUATE TEXTS MATH, V137
[5]   On theory of minimal areas. [J].
Carleman, T .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :154-159
[6]   A SUPERHARMONIC PROOF OF THE RIESZ,M. CONJUGATE FUNCTION THEOREM [J].
ESSEN, M .
ARKIV FOR MATEMATIK, 1984, 22 (02) :241-249
[7]  
Grafakos L, 1997, MATH RES LETT, V4, P469
[8]   Sharp integral inequalities for harmonic functions [J].
Hang, Fengbo ;
Wang, Xiaodong ;
Yan, Xiaodong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) :54-95
[9]  
HEDENMALM H, 2000, GRAD TEXT M, V199, P1
[10]   Best constants for some operators associated with the Fourier and Hilbert transforms [J].
Hollenbeck, B ;
Kalton, NJ ;
Verbitsky, IE .
STUDIA MATHEMATICA, 2003, 157 (03) :237-278