Hypothesis: Hydrophobic modification can influence interparticle interaction, their interfacial adsorption, and stability of particle-stabilized emulsions. Emulsions stabilized by rodlike particles are more stable than those prepared with spherical particles even at low concentrations. Moreover, interfacial adsorption of particles will be tuned by controlling the modification. Thus, it is possible to prepare stable W/O emulsions with in-situ modified rodlike particles. Experiments: Rodlike sepiolite particles were in-situ modified in oil using dimethyldioctadecylammonium chloride (DODMAC). High salinity solution (water) in paraffin oil (W/O) emulsion was prepared with the modified particles. Stability of emulsions at room temperature and after aging at 160 degrees C for 24 h was studied. Mechanism of emulsion stability was explored by rheological measurements and con focal fluorescent microscopy. Findings: Remarkable stability against coalescence was found at high temperature. The enhanced stability is due to the high viscosity of continuous phase. Moreover, modification of sepiolite particles at high DOMDAC concentrations enhances particle adsorption at water-oil interfaces and network in continuous phase, which improve the stability against sedimentation and coalescence of the W/O emulsions. (C) 2017 Elsevier Inc. All rights reserved.