Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes

被引:74
作者
Webb, Alexander J. [1 ]
Karatsa-Dodgson, Maria [1 ]
Grundling, Angelika [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Microbiol, London SW7 2AZ, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
GRAM-POSITIVE BACTERIA; STAPHYLOCOCCUS-AUREUS; BACILLUS-SUBTILIS; INTEGRATION VECTORS; TEICHOIC-ACIDS; PROTEIN; SURFACE; GENE; GLYCOSYLTRANSFERASES; EXPRESSION;
D O I
10.1111/j.1365-2958.2009.06829.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P>Lipoteichoic acid (LTA) is an important cell wall polymer in Gram-positive bacteria and often consists a polyglycerolphosphate backbone chain that is linked to the membrane by a glycolipid. In Listeria monocytogenes this glycolipid is Gal-Glc-DAG or Gal-Ptd-6Glc-DAG. Using a bioinformatics approach, we have identified L. monocytogenes genes predicted to be involved in glycolipid (lmo2555 and lmo2554) and LTA backbone (lmo0644 and lmo0927) synthesis. LTA and glycolipid analysis of wild-type and mutant strains confirmed the function of Lmo2555 and Lmo2554 as glycosyltransferases required for the formation of Glc-DAG and Gal-Glc-DAG. Deletion of a third gene, lmo2553, located in the same operon resulted in the production of LTA with an altered structure. lmo0927 and lmo0644 encode proteins with high similarity to the staphylococcal LTA synthase LtaS, which is responsible for polyglycerolphosphate backbone synthesis. We show that both proteins are involved in LTA synthesis. Our data support a model whereby Lmo0644 acts as an LTA primase LtaP and transfers the initial glycerolphosphate onto the glycolipid anchor, and Lmo0927 functions as LTA synthase LtaS, which extends the glycerolphosphate backbone chain. Inactivation of LtaS leads to severe growth and cell division defects, underscoring the pivotal role of LTA in this Gram-positive pathogen.
引用
收藏
页码:299 / 314
页数:16
相关论文
共 46 条
[1]   Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes [J].
Abachin, E ;
Poyart, C ;
Pellegrini, E ;
Milohanic, E ;
Fiedler, F ;
Berche, P ;
Trieu-Cuot, P .
MOLECULAR MICROBIOLOGY, 2002, 43 (01) :1-14
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
Bergback B., 2001, Water, Air, and Soil Pollution: Focus, V1, P3, DOI 10.1023/a:1017531532576
[4]  
BISHOP DK, 1987, J IMMUNOL, V139, P2005
[5]   The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells [J].
Braun, L ;
Ohayon, H ;
Cossart, P .
MOLECULAR MICROBIOLOGY, 1998, 27 (05) :1077-1087
[6]   InIB: an invasion protein of Listeria monocytogenes with a novel type of surface association [J].
Braun, L ;
Dramsi, S ;
Dehoux, P ;
Bierne, H ;
Lindahl, G ;
Cossart, P .
MOLECULAR MICROBIOLOGY, 1997, 25 (02) :285-294
[7]   DUAL ROLES OF PLCA IN LISTERIA-MONOCYTOGENES PATHOGENESIS [J].
CAMILLI, A ;
TILNEY, LG ;
PORTNOY, DA .
MOLECULAR MICROBIOLOGY, 1993, 8 (01) :143-157
[8]   A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities [J].
Campbell, JA ;
Davies, GJ ;
Bulone, V ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 326 :929-939
[9]   Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid [J].
Doran, KS ;
Engelson, EJ ;
Khosravi, A ;
Maisey, HC ;
Fedtke, I ;
Equils, O ;
Michelsen, KS ;
Arditi, M ;
Peschel, A ;
Nizet, V .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (09) :2499-2507
[10]   Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae [J].
Edman, M ;
Berg, S ;
Storm, P ;
Wikström, M ;
Vikström, S ;
Öhman, A ;
Wieslander, Å .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (10) :8420-8428