A quantitative map of human Condensins provides new insights into mitotic chromosome architecture

被引:115
作者
Walther, Nike [1 ]
Hossain, M. Julius [1 ]
Politi, Antonio Z. [1 ]
Koch, Birgit [1 ,3 ]
Kueblbeck, Moritz [1 ]
Odegard-Fougner, Oyvind [1 ]
Lampe, Marko [2 ]
Ellenberg, Jan [1 ]
机构
[1] European Mol Biol Lab, Cell Biol & Biophys Unit, Heidelberg, Germany
[2] European Mol Biol Lab, Adv Light Microscopy Facil, Heidelberg, Germany
[3] Max Planck Inst Med Res, Heidelberg, Germany
基金
美国国家卫生研究院;
关键词
XENOPUS EGG EXTRACTS; HUMAN-CELLS; CONDENSATION; ORGANIZATION; DNA; COMPLEX; PROTEIN; SEGREGATION; COMPACTION; CHROMATIDS;
D O I
10.1083/jcb.201801048
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)-calibrated live-cell imaging and superresolution microscopy. Although similar to 35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, similar to 195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches similar to 50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of similar to 450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to similar to 90 kb in prometaphase and similar to 70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation.
引用
收藏
页码:2309 / 2328
页数:20
相关论文
共 58 条
  • [21] Condensins: universal organizers of chromosomes with diverse functions
    Hirano, Tatsuya
    [J]. GENES & DEVELOPMENT, 2012, 26 (15) : 1659 - 1678
  • [22] Distinct functions of condensin I and II in mitotic chromosome assembly
    Hirota, T
    Gerlich, D
    Koch, B
    Ellenberg, J
    Peters, JM
    [J]. JOURNAL OF CELL SCIENCE, 2004, 117 (26) : 6435 - 6445
  • [23] Condensin confers the longitudinal rigidity of chromosomes
    Houlard, Martin
    Godwin, Jonathan
    Metson, Jean
    Lee, Jibak
    Hirano, Tatsuya
    Nasmyth, Kim
    [J]. NATURE CELL BIOLOGY, 2015, 17 (06) : 771 - +
  • [24] Condensin: Architect of mitotic chromosomes
    Hudson, Damien F.
    Marshall, Kathryn M.
    Earnshaw, William C.
    [J]. CHROMOSOME RESEARCH, 2009, 17 (02) : 131 - 144
  • [25] Condensin, master organizer of the genome
    Kalitsis, Paul
    Zhang, Tao
    Marshall, Kathryn M.
    Nielsen, Christian F.
    Hudson, Damien F.
    [J]. CHROMOSOME RESEARCH, 2017, 25 (01) : 61 - 76
  • [26] Chromosome condensation by a human condensin complex in Xenopus egg extracts
    Kimura, K
    Cuvier, O
    Hirano, T
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (08) : 5417 - 5420
  • [27] Dynamic organization of mitotic chromosomes
    Kinoshita, Kazuhisa
    Hirano, Tatsuya
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2017, 46 : 46 - 53
  • [28] Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing
    Koch, Birgit
    Nijmeijer, Bianca
    Kueblbeck, Moritz
    Cai, Yin
    Walther, Nike
    Ellenberg, Jan
    [J]. NATURE PROTOCOLS, 2018, 13 (06) : 1465 - 1487
  • [29] Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes
    Kschonsak, Marc
    Merkel, Fabian
    Bisht, Shveta
    Metz, Jutta
    Rybin, Vladimir
    Hassler, Markus
    Haering, Christian H.
    [J]. CELL, 2017, 171 (03) : 588 - +
  • [30] Shaping mitotic chromosomes: From classical concepts to molecular mechanisms
    Kschonsak, Marc
    Haering, Christian H.
    [J]. BIOESSAYS, 2015, 37 (07) : 755 - 766