Diversity of microbial communities and soil nutrients in sugarcane rhizosphere soil under water soluble fertilizer

被引:37
|
作者
Niu, Huan [1 ]
Pang, Ziqin [1 ,2 ,3 ]
Fallah, Nyumah [1 ]
Zhou, Yongmei [1 ]
Zhang, Caifang [1 ,2 ]
Hu, Chaohua [2 ]
Lin, Wenxiong [1 ]
Yuan, Zhaonian [1 ,2 ,3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Agr, Fuzhou, Peoples R China
[2] Fujian Agr & Forestry Univ, Key Lab Sugarcane Biol & Genet Breeding, Minist Agr, Fuzhou, Peoples R China
[3] Guangxi Univ, Prov & Minist Cosponsored Collaborat Innovat Ctr, Nanning, Peoples R China
来源
PLOS ONE | 2021年 / 16卷 / 01期
关键词
PLANT-GROWTH; ORGANIC FERTILIZER; BACTERIAL; MICROORGANISMS; ENHANCEMENT; COMPOST; CARBON; CROPS; YIELD;
D O I
10.1371/journal.pone.0245626
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamics of soil microbial communities are important for plant health and productivity. Soil microbial communities respond differently to fertilization. Organic water soluble fertilizer is an effective soil improver, which can effectively improve soil nutrient status and adjust soil pH value. However, little is known about the effects of water soluble fertilizers on soil microbial community, and the combined effects on soil nutrients and sugarcane productivity. Therefore, this study sought to assess the effects of water soluble fertilizer (1,050 kg/hm(2) (WS1), 1,650 kg/hm(2) (WS2)) and mineral fertilizer (1,500 kg/hm(2) (CK)) on the soil microbial community, soil nutrients and crop yield of sugarcane. The results showed that compared with CK, the application of water soluble fertilizers (WS1 and WS2) alleviated soil acidity, increased the OM, DOC, and AK contents in the soil, and further improved agronomic parameters and sugarcane yield. Both WS1 and WS2 treatments significantly increased the species richness of microorganisms, especially the enrichment of beneficial symbiotic bacteria such as Acidobacteria and Planctomycetes, which are more conducive to the healthy growth of plants. Furthermore, we found that soil nutrient contents were associated with soil microbial enrichment. These results indicate that water soluble fertilizer affects the enrichment of microorganisms by improving the nutrient content of the soil, thereby affecting the growth and yield of sugarcane. These findings therefore suggest that the utilization of water soluble fertilizer is an effective agriculture approach to improve soil fertility.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Different Amounts of Nitrogen Fertilizer Applications Alter the Bacterial Diversity and Community Structure in the Rhizosphere Soil of Sugarcane
    Gu, Yan
    Wang, Jihua
    Cai, Weijun
    Li, Guoliang
    Mei, Yu
    Yang, Shaohai
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [12] Plants use rhizosphere metabolites to regulate soil microbial diversity
    Bi, Boyuan
    Wang, Kun
    Zhang, He
    Wang, Yu
    Fei, Hongyan
    Pan, Ruopeng
    Han, Fengpeng
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (18) : 5267 - 5280
  • [13] Effects of cultivation of OsrHSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere
    Zhang, Xiaobing
    Wang, Xujing
    Tang, Qiaoling
    Li, Ning
    Liu, Peilei
    Dong, Yufeng
    Pang, Weimin
    Yang, Jiangtao
    Wang, Zhixing
    CROP JOURNAL, 2015, 3 (02): : 163 - 167
  • [14] Effects of commercial microbial biostimulants on soil and root microbial communities and sugarcane yield
    Berg, Shelby
    Dennis, Paul G.
    Paungfoo-Lonhienne, Chanyarat
    Anderson, Jay
    Robinson, Nicole
    Brackin, Richard
    Royle, Adam
    DiBella, Lawrence
    Schmidt, Susanne
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (04) : 565 - 580
  • [15] The Influence of Applying Microbial Amendments to Soil and Plants on the Microbial Diversity in the Rhizosphere Soil of Garlic
    Li, Yang
    Liu, Sushuang
    Yang, Xiangui
    Wu, Choufei
    Gao, Quanxin
    Zhang, Liqin
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2021, 15 (04) : 528 - 535
  • [16] Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities
    Cai, Jing-Fang
    Jiang, Fan
    Liu, Xuan-Shao
    Sun, Kai
    Wang, Wei
    Zhang, Ming-Xiang
    Li, Hong-Li
    Xu, Hao-Fu
    Kong, Wei-Jing
    Yu, Fei-Hai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 788
  • [17] Changes of Microbial Diversity in Rhizosphere of Different Cadmium-Gradients Soil under Irrigation with Reclaimed Water
    Cui, Jiaxin
    Li, Ping
    Qi, Xuebin
    Rahman, Shafeeq Ur
    Zhang, Zulin
    SUSTAINABILITY, 2022, 14 (14)
  • [18] Changes in Microbial Diversity, Soil Function, and Plant Biomass of Cotton Rhizosphere Soil Under the Influence of Chlorpyrifos
    Wang, Xiaobing
    Wang, Jian
    Wang, Yaping
    Zhu, Xiaochong
    Cheng, Juan
    Wang, Wei
    CURRENT MICROBIOLOGY, 2022, 79 (11)
  • [19] Environmental connectivity controls diversity in soil microbial communities
    Dubey, Manupriyam
    Hadadi, Noushin
    Pelet, Serge
    Carraro, Nicolas
    Johnson, David R.
    van der Meer, Jan R.
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [20] Effects of Continuous Nitrogen Fertilizer Application on the Diversity and Composition of Rhizosphere Soil Bacteria
    Ren, Ning
    Wang, Yang
    Ye, Youliang
    Zhao, Yanan
    Huang, Yufang
    Fu, Wen
    Chu, Xv
    FRONTIERS IN MICROBIOLOGY, 2020, 11