Determination of Friction Capacity of Driven Pile in Clay Using Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR)

被引:18
作者
Samui, Pijush [1 ]
机构
[1] NIT Patna, Dept Civil Engn, Patna 800005, Bihar, India
关键词
Minimax Probability Machine Regression; Gaussian Process Regression; Variance; Artificial Neural Network; Pile foundation; Clay; Friction capacity; PREDICTION;
D O I
10.1007/s10706-019-00928-8
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Friction capacity (f(s)) of driven pile in clay is key parameter for designing pile foundation. This study employs Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR) for determination of f(s) of driven piles in clay. GPR is a Bayesian nonparametric regression model. MPMR is a probabilistic model. Pile length (L), pile diameter (D), effective vertical stress (sigma'(v)), undrained shear strength (S-u) have been used as input variables of GPR and MPMR. The output of the models is f(s). The developed GPR, MPMR models have been compared with the Artificial Neural Network (ANN). GPR also gives the variance of predicted f(s). The results prove that the developed GPR and MPMR are efficient models for prediction of f(s) of driven piles in clay.
引用
收藏
页码:4643 / 4647
页数:5
相关论文
共 19 条
  • [1] [Anonymous], 1999, COMPUT-AIDED CIV INF, DOI DOI 10.1111/0885-9507.00154
  • [2] [Anonymous], GROUND ENG
  • [3] Burland J.B., 1973, GROUND ENG, V6, P30
  • [4] Chandler R.J., 1968, Civ Eng Public Works Rev, V60, P48
  • [5] The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions
    Erzin, Yusuf
    Cetin, Tulin
    [J]. COMPUTERS & GEOSCIENCES, 2013, 51 : 305 - 313
  • [6] Empirical design in geotechnics using neural networks
    Goh, ATC
    [J]. GEOTECHNIQUE, 1995, 45 (04): : 709 - 714
  • [7] Kecman V, 2001, FITTING NEURAL NETWO, P353
  • [8] McClleland B., 1972, General Report ASCE Specialty Conf. Performance of Earth and Earth Supported Structures, V2, P111
  • [9] Meyerhoff G.G., 1976, J GEOTECHNICAL ENINE, V102, P195
  • [10] GPR model with signal preprocessing and bias update for dynamic processes modeling
    Ni, Wangdong
    Wang, Ke
    Chen, Tao
    Ng, Wun Jern
    Tan, Soon Keat
    [J]. CONTROL ENGINEERING PRACTICE, 2012, 20 (12) : 1281 - 1292