Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions

被引:72
作者
Biler, Piotr [1 ]
Karch, Grzegorz [1 ]
Monneau, Regis [2 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, PL-50384 Wroclaw, Poland
[2] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, France
关键词
ONE-DIMENSIONAL MODEL; GROUP-DYNAMICS; VISCOSITY SOLUTIONS; GLOBAL EXISTENCE; SINGULARITIES; HOMOGENIZATION; EQUATIONS;
D O I
10.1007/s00220-009-0855-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear pseudodifferential equation describing the dynamics of dislocations in crystals. The long time asymptotics of solutions is described by the self-similar profiles.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 32 条
[1]   Dislocation dynamics: Short-time existence and uniqueness of the solution [J].
Alvarez, Olivier ;
Hoch, Philippe ;
Le Bouar, Yann ;
Monneau, Regis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (03) :449-504
[2]   Global existence and decay for viscous Hamilton-Jacobi equations [J].
Amour, L ;
Ben-Artzi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) :621-628
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 1957, Integral Equations
[5]  
[Anonymous], 2006, Smoothing and Decay Estimates for Nonlinear Diffusion Equations
[6]  
[Anonymous], 1955, AUST J PHYS, DOI DOI 10.1071/PH550001
[7]  
[Anonymous], 1992, THEORY DISLOCATIONS
[8]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[9]   On the Dirichlet problem for second-order elliptic integro-differential equations [J].
Barles, G. ;
Chasseigne, E. ;
Imbert, C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :213-246
[10]   The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04) :343-378