Glycemic Control for Critically Ill Patients with Online Identification of Insulin Sensitivity

被引:1
作者
Wu, Sha [1 ]
Furutani, Eiko [2 ,3 ]
Sugawara, Tomonori [3 ]
Asaga, Takehiko [3 ]
Shirakami, Gotaro [3 ]
机构
[1] Kyoto Univ, Dept Elect Engn, Kyoto, Japan
[2] Univ Hyogo, Dept Elect Mat & Engn, Kobe, Hyogo, Japan
[3] Kagawa Univ, Dept Anesthesiol, Takamatsu, Kagawa, Japan
来源
ADVANCED BIOMEDICAL ENGINEERING | 2020年 / 9卷
基金
日本学术振兴会;
关键词
glycemic control; insulin sensitivity; model predictive control; critically ill patient; intensive care unit; SIMULATION-MODEL; MORTALITY; PROTOCOL;
D O I
10.14326/abe.9.43
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hyperglycemia is common in critically ill patients and leads to various severe complications and even death. Keeping blood glucose within the range of 80-110 mg/dL (4.4-6.1 mmol/L) has been shown to reduce mortality and morbidity in intensive care units (ICU). Many studies on BG control systems for ICU patients have been reported. However, it is not easy to maintain blood glucose within the desired range because of the time variability of insulin sensitivity in critically ill patients. In this study, to improve the prediction accuracy of blood glucose level in patients, we modified a glycometabolism model developed in our previous study, by identifying parameter values from clinical ICU data. Then, we modified insulin sensitivity online identification algorithm to avoid a sudden change in insulin sensitivity during online identification that updates insulin sensitivity value at intervals of 30 min. Finally, since hypoglycemia prevention as important, we designed a glycemic control system using nonlinear model predictive control based on the modified model and the online identification algorithm of insulin sensitivity. The new glycemic control system achieved 71% of blood glucose measurements within the range of 80-110 mg/dL and 1.5% of measurements below 80 mg/dL, which indicated effectiveness and safety.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 23 条
  • [1] PHYSIOLOGIC EVALUATION OF FACTORS CONTROLLING GLUCOSE-TOLERANCE IN MAN - MEASUREMENT OF INSULIN SENSITIVITY AND BETA-CELL GLUCOSE SENSITIVITY FROM THE RESPONSE TO INTRAVENOUS GLUCOSE
    BERGMAN, RN
    PHILLIPS, LS
    COBELLI, C
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1981, 68 (06) : 1456 - 1467
  • [2] Glucose absorption and small intestinal transit in critical illness
    Deane, Adam M.
    Summers, Matthew J.
    Zaknic, Antony V.
    Chapman, Marianne J.
    Di Bartolomeo, Anna E.
    Bellon, Max
    Maddox, Anne
    Russo, Antoinette
    Horowitz, Michael
    Fraser, Robert J. L.
    [J]. CRITICAL CARE MEDICINE, 2011, 39 (06) : 1282 - 1288
  • [3] Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis
    Falciglia, Mercedes
    Freyberg, Ron W.
    Almenoff, Peter L.
    D'Alessio, David A.
    Render, Marta L.
    [J]. CRITICAL CARE MEDICINE, 2009, 37 (12) : 3001 - 3009
  • [4] Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit
    Goldberg, PA
    Siegel, MD
    Sherwin, RS
    Halickman, JI
    Lee, M
    Bailey, VA
    Lee, SL
    Dziura, JD
    Inzucchi, SE
    [J]. DIABETES CARE, 2004, 27 (02) : 461 - 467
  • [5] Haverbeke N, 2008, P 17 IFAC WORLD C SE, P9069
  • [6] Herpe Tom Van, 2007, J Diabetes Sci Technol, V1, P348
  • [7] A simulation model of glucose regulation in the critically ill
    Hovorka, Roman
    Chassin, Ludovic J.
    Ellmerer, Martin
    Plank, Johannes
    Wilinska, Malgorzata E.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2008, 29 (08) : 959 - 978
  • [8] Effect of an intensive glucose management protocol on the mortality of critically ill adult patients
    Krinsley, JS
    [J]. MAYO CLINIC PROCEEDINGS, 2004, 79 (08) : 992 - 1000
  • [9] A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients
    Lin, Jessica
    Razak, Normy N.
    Pretty, Christopher G.
    Le Compte, Aaron
    Docherty, Paul
    Parente, Jacquelyn D.
    Shaw, Geoffrey M.
    Hann, Christopher E.
    Chase, J. Geoffrey
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 102 (02) : 192 - 205
  • [10] Meal simulation model of the glucose-insulin system
    Man, Chiara Dalla
    Rizza, Robert. A.
    Cobelli, Claudio
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (10) : 1740 - 1749