Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching

被引:62
作者
Medvedev, A. E. [1 ]
Ng, H. P. [1 ]
Lapovok, R. [1 ,2 ]
Estrin, Y. [1 ]
Lawe, T. C. [3 ]
Anumalasetty, V. N. [4 ]
机构
[1] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[2] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[3] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
[4] Carpenter Technol Corp, R&D Bldg 68,POB 14662, Reading, PA 19612 USA
基金
澳大利亚研究理事会;
关键词
Titanium; Surface modification; Fatigue; Nanocrystalline materials; Equal channel angular pressing; CYCLIC DEFORMATION-BEHAVIOR; SEVERE PLASTIC-DEFORMATION; ALLOYS; IMPLANTS; METALS;
D O I
10.1016/j.jmbbm.2015.11.035
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Surface modification techniques are widely used to enhance the biological response to the implant materials. These techniques generally create a roughened surface, effectively increasing the surface area thus promoting cell adhesion. However, a negative side effect is a higher susceptibility of a roughened surface to failure due to the presence of multiple stress concentrators. The purpose of the study reported here was to examine the effects of surface modification by sand blasting and acid-etching (SLA) on the microstructure and fatigue performance of coarse-grained and ultrafine-grained (UFG) commercially pure titanium. Finer grain sizes, produced by equal channel angular pressing, resulted in lower values of surface roughness in SLA-processed material. This effect was associated with greater resistance of the UFG structure to plastic deformation. The fatigue properties of UFG Ti were found to be superior to those of coarse-grained Ti and conventional Ti-6A1-4V, both before and after SLA-treatment. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 32 条
[1]  
Anumalasetty VN, 2013, P 8 PAC RIM INT C AD, P3265
[2]   Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices [J].
Barriuso, S. ;
Chao, J. ;
Jimenez, J. A. ;
Garcia, S. ;
Gonzalez-Carrasco, J. L. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 30 :30-40
[3]  
Bindu S, 2009, J MATER SCI TECHNOL, V25, P556
[4]   Spatial and temporal sequence of events in cell adhesion: From molecular recognition to focal adhesion assembly [J].
Cohen, M ;
Joester, D ;
Geiger, B ;
Addadi, L .
CHEMBIOCHEM, 2004, 5 (10) :1393-1399
[5]   Rough surfaces of titanium and titanium alloys for implants and prostheses [J].
Conforto, E ;
Aronsson, BO ;
Salito, A ;
Crestou, C ;
Caillard, D .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2004, 24 (05) :611-618
[6]   Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J].
Estrin, Y. ;
Vinogradov, A. .
ACTA MATERIALIA, 2013, 61 (03) :782-817
[7]   Accelerated growth of preosteoblastic cells on ultrafine grained titanium [J].
Estrin, Y. ;
Kasper, C. ;
Diederichs, S. ;
Lapovok, R. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 90A (04) :1239-1242
[8]   Accelerated stem cell attachment to ultrafine grained titanium [J].
Estrin, Yuri ;
Ivanova, Elena P. ;
Michalska, Anna ;
Truong, Vi Khanh ;
Lapovok, Rimma ;
Boyd, Richard .
ACTA BIOMATERIALIA, 2011, 7 (02) :900-906
[9]   Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview [J].
Estrin, Yuri ;
Vinogradov, Alexei .
INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (06) :898-907
[10]   Roughness parameters [J].
Gadelmawla, ES ;
Koura, MM ;
Maksoud, TMA ;
Elewa, IM ;
Soliman, HH .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 123 (01) :133-145