Fermi-Dirac-Fokker-Planck equation: Well-posedness & long-time asymptotics

被引:31
作者
Carrillo, Jose A. [1 ]
Laurencot, Philippe [2 ,3 ]
Rosado, Jesus [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[2] CNRS, Inst Math Toulouse, UMR 7129, F-31062 Toulouse 9, France
[3] Univ Toulouse, F-31062 Toulouse 9, France
关键词
BOLTZMANN-EQUATION; EXCLUSION-PRINCIPLE; KINETIC-MODELS; CONVERGENCE; EQUILIBRIUM; PARTICLES; BOSONS; THERMODYNAMICS; DIFFUSION; STABILITY;
D O I
10.1016/j.jde.2009.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Fokker-Planck type equation for interacting particles with exclusion principle is analyzed. The nonlinear drift gives rise to mathematical difficulties in controlling moments of the distribution function. Assuming enough initial moments are finite, we can show the global existence of weak solutions for this problem. The natural associated entropy of the equation is the main tool to derive uniform in time a priori estimates for the kinetic energy and entropy. As a consequence, long-time asymptotics in L(1) are characterized by the Fermi-Dirac equilibrium with the same initial mass. This result is achieved without rate for any constructed global solution and with exponential rate due to entropy/entropy-dissipation arguments for initial data controlled by Fermi-Dirac distributions. Finally, initial data below radial solutions with suitable decay at infinity lead to solutions for which the relative entropy towards the Fermi-Dirac equilibrium is shown to converge to zero without decay rate. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2209 / 2234
页数:26
相关论文
共 29 条
[1]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[2]   1D nonlinear Fokker-Planck equations for fermions and bosons [J].
Carrillo, J. A. ;
Rosado, J. ;
Salvarani, F. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (02) :148-154
[3]  
Carrillo JA, 1998, MATH METHOD APPL SCI, V21, P1269, DOI 10.1002/(SICI)1099-1476(19980910)21:13<1269::AID-MMA995>3.0.CO
[4]  
2-O
[5]   Contractions in the 2-Wasserstein length space and thermalization of granular media [J].
Carrillo, JA ;
McCann, RJ ;
Villani, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :217-263
[6]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[7]   Generalized Fokker-Planck equations and effective thermodynamics [J].
Chavanis, PH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :57-65
[8]   Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski [J].
Chavanis, PH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 :89-122
[9]   Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence [J].
Chavanis, PH .
PHYSICAL REVIEW E, 2003, 68 (03) :20
[10]  
Dellacherie C., 1975, Probabilite et Potentiel, VI-IV