Numerical canonical transformation approach to quantum many-body problems

被引:109
|
作者
White, SR [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 117卷 / 16期
关键词
D O I
10.1063/1.1508370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations. (C) 2002 American Institute of Physics.
引用
收藏
页码:7472 / 7482
页数:11
相关论文
共 50 条
  • [31] ON THE NUMERICAL SOLUTION OF MANY-BODY CONTACT DYNAMICS PROBLEMS FORMULATED AS COMPLEMENTARITY PROBLEMS
    Heyn, Toby
    Anitescu, Mihai
    Negrut, Dan
    Tasora, Alessandro
    Lamb, David
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 6, 2012, : 61 - 69
  • [32] GEOMETRY OF BACKFLOW TRANSFORMATION ANSATZE FOR QUANTUM MANY-BODY FERMIONIC WAVEFUNCTIONS
    Huang, Hang
    Landsberg, Joseph M.
    Lu, Jianfeng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (05) : 1447 - 1453
  • [33] Real-Space Decoupling Transformation for Quantum Many-Body Systems
    Evenbly, G.
    Vidal, G.
    PHYSICAL REVIEW LETTERS, 2014, 112 (22)
  • [34] Numerical finite size scaling approach to many-body localization
    Fleury, Genevieve
    Waintal, Xavier
    PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [35] A METHOD OF A QUASI-LINEAR CANONICAL TRANSFORMATION FOR MANY-BODY PROBLEM. I
    KANNO, S
    PROGRESS OF THEORETICAL PHYSICS, 1969, 41 (04): : 966 - +
  • [36] ON THE GENERALIZED LANGEVIN EQUATION APPROACH TO A QUANTUM MANY-BODY SYSTEM
    UEYAMA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (03) : 1025 - 1028
  • [37] Scalable approach to many-body localization via quantum data
    Gresch, Alexander
    Bittel, Lennart
    Kliesch, Martin
    arXiv, 2022,
  • [38] A QUANTUM MONTE-CARLO APPROACH TO MANY-BODY PHYSICS
    VONDERLINDEN, W
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 220 (2-3): : 53 - 162
  • [39] Sturmian expansions for quantum mechanical many-body problems, and hyperspherical harmonics
    Aquilanti, Vincenzo
    Avery, John
    ADVANCES IN QUANTUM CHEMISTRY, VOL 39: NEW PERSPECTIVES IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, PT 1, 2001, 39 : 71 - 102
  • [40] Liquid-state NMR simulations of quantum many-body problems
    Negrevergne, C
    Somma, R
    Ortiz, G
    Knill, E
    Laflamme, R
    PHYSICAL REVIEW A, 2005, 71 (03)