Numerical canonical transformation approach to quantum many-body problems

被引:109
|
作者
White, SR [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 117卷 / 16期
关键词
D O I
10.1063/1.1508370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations. (C) 2002 American Institute of Physics.
引用
收藏
页码:7472 / 7482
页数:11
相关论文
共 50 条
  • [21] Transformer quantum state: A multipurpose model for quantum many-body problems
    Zhang, Yuan -Hang
    Di Ventra, Massimiliano
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [22] Schrieffer-Wolff transformation for quantum many-body systems
    Bravyi, Sergey
    DiVincenzo, David P.
    Loss, Daniel
    ANNALS OF PHYSICS, 2011, 326 (10) : 2793 - 2826
  • [23] A perturbative probabilistic approach to quantum many-body systems
    Di Stefano, Andrea
    Ostilli, Massimo
    Presilla, Carlo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [24] Functional renormalization group for nonequilibrium quantum many-body problems
    Gezzi, R.
    Pruschke, Th.
    Meden, V.
    PHYSICAL REVIEW B, 2007, 75 (04):
  • [25] Random sampling neural network for quantum many-body problems
    Liu, Chen-Yu
    Wang, Daw-Wei
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [26] MONTE-CARLO METHODS IN QUANTUM MANY-BODY PROBLEMS
    KALOS, MH
    NUCLEAR PHYSICS A, 1979, 328 (1-2) : 153 - 168
  • [27] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [28] APPROACH TO NUCLEAR MANY-BODY PROBLEM BY A VARIATIONALLY DETERMINED TRANSFORMATION
    MANN, A
    NISSIMOV, H
    UNNA, I
    PHYSICAL REVIEW, 1969, 186 (04): : 1104 - &
  • [29] Many-Body Quantum Magic
    Liu, Zi-Wen
    Winter, Andreas
    PRX QUANTUM, 2022, 3 (02):
  • [30] Canonical quantization of nonlinear many-body systems
    Scarfone, AM
    PHYSICAL REVIEW E, 2005, 71 (05):