Numerical canonical transformation approach to quantum many-body problems

被引:109
|
作者
White, SR [1 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 117卷 / 16期
关键词
D O I
10.1063/1.1508370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations. (C) 2002 American Institute of Physics.
引用
收藏
页码:7472 / 7482
页数:11
相关论文
共 50 条
  • [1] New canonical transformations to eliminate external fields in quantum many-body problems
    Fujita, M
    Anma, D
    Fukuda, T
    Koizumi, H
    Toyoda, T
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 2004, 708 : 761 - 762
  • [2] A PIPELINE APPROACH TO MANY-BODY PROBLEMS
    SUGIMOTO, D
    PHYSICS WORLD, 1993, 6 (11) : 32 - 35
  • [3] A driven similarity renormalization group approach to quantum many-body problems
    Evangelista, Francesco A.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (05):
  • [4] Approximation algorithms for quantum many-body problems
    Bravyi, Sergey
    Gosset, David
    Koenig, Robert
    Temme, Kristan
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [5] Quantum many-body problems and perturbation theory
    A. V. Turbiner
    Physics of Atomic Nuclei, 2002, 65 : 1135 - 1143
  • [6] Boltzmann machines and quantum many-body problems
    Nomura, Yusuke
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (07)
  • [7] Variational benchmarks for quantum many-body problems
    Wu, Dian
    Rossi, Riccardo
    Vicentini, Filippo
    Astrakhantsev, Nikita
    Becca, Federico
    Cao, Xiaodong
    Carrasquilla, Juan
    Ferrari, Francesco
    Georges, Antoine
    Hibat-Allah, Mohamed
    Imada, Masatoshi
    Lauchli, Andreas M.
    Mazzola, Guglielmo
    Mezzacapo, Antonio
    Millis, Andrew
    Moreno, Javier Robledo
    Neupert, Titus
    Nomura, Yusuke
    Nys, Jannes
    Parcollet, Olivier
    Pohle, Rico
    Romero, Imelda
    Schmid, Michael
    Silvester, J. Maxwell
    Sorella, Sandro
    Tocchio, Luca F.
    Wang, Lei
    White, Steven R.
    Wietek, Alexander
    Yang, Qi
    Yang, Yiqi
    Zhang, Shiwei
    Carleo, Giuseppe
    SCIENCE, 2024, 386 (6719) : 296 - 301
  • [8] Variational Embedding for Quantum Many-Body Problems
    Lin, Lin
    Lindsey, Michael
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (09) : 2033 - 2068
  • [9] Sparse Modeling in Quantum Many-Body Problems
    Otsuki, Junya
    Ohzeki, Masayuki
    Shinaoka, Hiroshi
    Yoshimi, Kazuyoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (01)
  • [10] New algebraic quantum many-body problems
    Gómez-Ullate, D
    González-López, A
    Rodríguez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7305 - 7335