Error Field Impact on Plasma Boundary in ITER Scenarios

被引:1
作者
Barbato, L. [1 ]
Formisano, A. [2 ]
Martone, R. [2 ]
Villone, F. [1 ]
机构
[1] Univ Cassino & Lazio Meridionale, Dept Elect Elect & Informat Engn, I-03043 Cassino, Italy
[2] Univ Naples 2, Dept Ind & Informat Engn, I-31031 Naples, Italy
关键词
Electromagnetic models coupling; error fields (EFs); numerical methods; thermonuclear fusion;
D O I
10.1109/TMAG.2015.2480417
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Discrepancies in magnetic field maps produced by confinement coils in thermonuclear fusion reactors may drive plasma to lose stability and must be carefully controlled during the whole time evolution of each shot using suitable correction coils. Even when kept below safety thresholds, these error fields (EFs) may alter the geometry of magnetic flux lines, defining the plasma geometry. This paper, using high accuracy 3-D magnetic field computations for confinement coils, addresses the issue of evaluating the effect of EFs on the plasma boundary shape during the shot, modeled as a sequence of equilibrium configurations. In particular, a procedure that can compute the shape perturbations due to given deformations of the coils has been set up and used to carry out an analysis of relationship between the EF and shape perturbations during the time evolution of International Tokamak Experimental Reactor programmed scenario.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
Albanese R, 1998, ADV IMAG ELECT PHYS, V102, P1
[2]  
Barbato L., 2014, P S FUS TECHN SAN SE
[3]   Development of the ITER baseline inductive scenario [J].
Casper, T. ;
Gribov, Y. ;
Kavin, A. ;
Lukash, V. ;
Khayrutdinov, R. ;
Fujieda, H. ;
Kessel, C. .
NUCLEAR FUSION, 2014, 54 (01)
[4]   Fast magnetic field computation in fusion technology using GPU technology [J].
Chiariello, Andrea Gaetano ;
Formisano, Alessandro ;
Martone, Raffaele .
FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) :1635-1639
[5]  
Grad H., 1958, J. Nucl. Energy, V31, P190, DOI DOI 10.1016/0891-3919(58)90139-6
[6]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202
[7]   ITER non-axisymmetric error fields induced by its magnet system [J].
Knaster, J. ;
Amoskov, V. ;
Formisano, A. ;
Gribov, Y. ;
Lamzin, E. ;
Martone, L. ;
Maximenkova, N. ;
Mitchell, N. ;
Portone, A. ;
Sytchevsky, S. ;
Testoni, P. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :1053-1056
[8]  
Russenschuck S, 2010, FIELD COMPUTATION FOR ACCELERATOR MAGNETS: ANALYTICAL AND NUMERICAL METHODS FOR ELECTROMAGNETIC DESIGN AND OPTIMIZATION, P1, DOI 10.1002/9783527635467
[9]  
Solovev L.S., 1995, Rev. Plasma Phys., V5, P1
[10]   Coupling of nonlinear axisymmetric plasma evolution with three-dimensional volumetric conductors [J].
Villone, F. ;
Barbato, L. ;
Mastrostefano, S. ;
Ventre, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (09)