A Focus on Natural Variation for Abiotic Constraints Response in the Model Species Arabidopsis thaliana

被引:29
|
作者
Lefebvre, Valerie [1 ]
Kiani, Seifollah Poormohammad [1 ]
Durand-Tardif, Mylene [1 ]
机构
[1] INRA IJPB, Genet & Plant Breeding Lab, UR 254, F-78000 Versailles, France
关键词
Arabidopsis thaliana; natural variation; QTL; abiotic stress; drought; osmotic stress; cold stress; nutrient deficiency; heavy metal stress; light spectrum; QUANTITATIVE TRAIT LOCUS; AFFINITY MOLYBDATE TRANSPORTER; SCALE POPULATION-STRUCTURE; RECOMBINANT INBRED LINES; ORGANIC-ACID METABOLISM; MAP-BASED CLONING; FREEZING TOLERANCE; GENETIC-VARIATION; COLD-ACCLIMATION; FLOWERING-TIME;
D O I
10.3390/ijms10083547
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants are particularly subject to environmental stress, as they cannot move from unfavourable surroundings. As a consequence they have to react in situ. In any case, plants have to sense the stress, then the signal has to be transduced to engage the appropriate response. Stress response is effected by regulating genes, by turning on molecular mechanisms to protect the whole organism and its components and/or to repair damage. Reactions vary depending on the type of stress and its intensity, but some are commonly turned on because some responses to different abiotic stresses are shared. In addition, there are multiple ways for plants to respond to environmental stress, depending on the species and life strategy, but also multiple ways within a species depending on plant variety or ecotype. It is regularly accepted that populations of a single species originating from diverse geographic origins and/or that have been subjected to different selective pressure, have evolved retaining the best alleles for completing their life cycle. Therefore, the study of natural variation in response to abiotic stress, can help unravel key genes and alleles for plants to cope with their unfavourable physical and chemical surroundings. This review is focusing on Arabidopsis thaliana which has been largely adopted by the global scientific community as a model organism. Also, tools and data that facilitate investigation of natural variation and abiotic stress encountered in the wild are set out. Characterization of accessions, QTLs detection and cloning of alleles responsible for variation are presented.
引用
收藏
页码:3547 / 3582
页数:36
相关论文
共 50 条
  • [1] Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species
    Zuther, Ellen
    Lee, Yang Ping
    Erban, Alexander
    Kopka, Joachim
    Hincha, Dirk K.
    SURVIVAL STRATEGIES IN EXTREME COLD AND DESICCATION: ADAPTATION MECHANISMS AND THEIR APPLICATIONS, 2018, 1081 : 81 - 98
  • [2] Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana
    Delker, Carolin
    Poeschl, Yvonne
    Raschke, Anja
    Ullrich, Kristian
    Ettingshausen, Stefan
    Hauptmann, Valeska
    Grosse, Ivo
    Quint, Marcel
    PLANT CELL, 2010, 22 (07): : 2184 - 2200
  • [3] Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses
    Silvia Coolen
    Johan A. Van Pelt
    Saskia C. M. Van Wees
    Corné M. J. Pieterse
    Planta, 2019, 249 : 1087 - 1105
  • [4] Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses
    Coolen, Silvia
    Van Pelt, Johan A.
    Van Wees, Saskia C. M.
    Pieterse, Corne M. J.
    PLANTA, 2019, 249 (04) : 1087 - 1105
  • [5] Epigenetic natural variation in Arabidopsis thaliana
    Vaughn, Matthew W.
    Tanurdzic, Milos
    Lippman, Zachary
    Jiang, Hongmei
    Carrasquillo, Robert
    Rabinowicz, Pablo D.
    Dedhia, Neilay
    McCombie, W. Richard
    Agier, Nicolas
    Bulski, Agnes
    Colot, Vincent
    Doerge, R. W.
    Martienssen, Robert A.
    PLOS BIOLOGY, 2007, 5 (07) : 1617 - 1629
  • [6] Natural variation of Arabidopsis thaliana root architecture in response to nitrate availability
    Li, Jianfu
    Song, Xiaoyun
    Kong, Xiuzhen
    Wang, Jun
    Sun, Wenjie
    Zuo, Kaijing
    JOURNAL OF PLANT NUTRITION, 2019, 42 (07) : 723 - 736
  • [7] Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana
    Lasky, Jesse R.
    Marais, David L. Des
    Lowry, David B.
    Povolotskaya, Inna
    McKay, John K.
    Richards, James H.
    Keitt, Timothy H.
    Juenger, Thomas E.
    MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (09) : 2283 - 2296
  • [8] Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana
    De Pessemier, Jerome
    Chardon, Fabien
    Juraniec, Michal
    Delaplace, Pierre
    Hermans, Christian
    MECHANISMS OF DEVELOPMENT, 2013, 130 (01) : 45 - 53
  • [9] Natural variation of temperature acclimation of Arabidopsis thaliana
    Hernandez, Jakob Sebastian
    Dziubek, Dejan
    Schroeder, Laura
    Seydel, Charlotte
    Kitashova, Anastasia
    Brodsky, Vladimir
    Naegele, Thomas
    PHYSIOLOGIA PLANTARUM, 2023, 175 (06)
  • [10] Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply
    Xiao, Qiying
    De Gernier, Hugues
    Kupcsik, Laszlo
    De Pessemier, Jerome
    Dittert, Klaus
    Fladung, Kirsten
    Verbruggen, Nathalie
    Hermans, Christian
    CROP & PASTURE SCIENCE, 2015, 66 (12): : 1249 - 1258