On the Separability of Unitarily Invariant Random Quantum States: The Unbalanced Regime

被引:3
作者
Nechita, Ion [1 ]
机构
[1] Univ Toulouse, CNRS, UPS, Lab Phys Theor, Toulouse, France
关键词
SUFFICIENT CONDITIONS; REDUCTION CRITERION; INFORMATION-THEORY; FREE CONVOLUTION; ENTANGLEMENT; MATRICES; MAPS;
D O I
10.1155/2018/7105074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study entanglement-related properties of random quantum states which are unitarily invariant, in the sense that their distribution is left unchanged by conjugation with arbitrary unitary operators. In the large matrix size limit, the distribution of these random quantum states is characterized by their limiting spectrum, a compactly supported probability distribution. We prove several results characterizing entanglement and the PPT property of random bipartite unitarily invariant quantum states in terms of the limiting spectral distribution, in the unbalanced asymptotical regime where one of the two subsystems is fixed, while the other one grows in size.
引用
收藏
页数:13
相关论文
共 46 条
[1]  
[Anonymous], 2006, LECT COMBINATORICS F, DOI DOI 10.1017/CBO9780511735127
[2]   On the asymptotic distribution of block-modified random matrices [J].
Arizmendi, Octavio ;
Nechita, Ion ;
Vargas, Carlos .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01) :015216
[3]   Entanglement Thresholds for Random Induced States [J].
Aubrun, Guillaume ;
Szarek, Stanislaw J. ;
Ye, Deping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (01) :129-171
[4]   PARTIAL TRANSPOSITION OF RANDOM STATES AND NON-CENTERED SEMICIRCULAR DISTRIBUTIONS [J].
Aubrun, Guillaume .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (02)
[5]   Realigning random states [J].
Aubrun, Guillaume ;
Nechita, Ion .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
[6]   NECESSARY AND SUFFICIENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF THE LARGEST EIGENVALUE OF A WIGNER MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (04) :1729-1741
[7]  
Banica T, 2015, HOUSTON J MATH, V41, P113
[8]   Asymptotic Eigenvalue Distributions of Block-Transposed Wishart Matrices [J].
Banica, Teodor ;
Nechita, Ion .
JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) :855-869
[9]   FREE CONVOLUTION OF MEASURES WITH UNBOUNDED SUPPORT [J].
BERCOVICI, H ;
VOICULESCU, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :733-773
[10]   Reduction criterion for separability [J].
Cerf, NJ ;
Adami, C ;
Gingrich, RM .
PHYSICAL REVIEW A, 1999, 60 (02) :898-909