Free energy and the Fokker-Planck equation

被引:44
|
作者
Jordan, R
Kinderlehrer, D
Otto, F
机构
[1] CARNEGIE MELLON UNIV,CTR NONLINEAR ANAL,PITTSBURGH,PA 15213
[2] UNIV BONN,DEPT MATH APPL,BONN,GERMANY
[3] NYU,COURANT INST MATH SCI,NEW YORK,NY
来源
PHYSICA D | 1997年 / 107卷 / 2-4期
基金
美国国家科学基金会;
关键词
Fokker-Planck equation; gradient flux; free energy; Wasserstein metric;
D O I
10.1016/S0167-2789(97)00093-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a new and intriguing connection between the Fokker-Planck equation with gradient drift term and an associated free energy functional. Namely, we demonstrate that such a Fokker-Planck equation may be interpreted as a gradient flux, of a steepest descent, of a free energy functional with respect to a certain metric, This is accomplished through the construction of a time-discrete iterative variational scheme whose solutions converge to the solution of the Fokker-Planck equation. The time step in this scheme is governed by the Wasserstein metric on probability measures.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 50 条
  • [1] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [2] ROLE OF FREE-ENERGY FOR SYSTEMS GOVERNED BY FOKKER-PLANCK EQUATION
    HAMMAD, P
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1976, 25 (02): : 183 - 196
  • [3] Fokker-Planck equation for the energy cascade in turbulence
    Naert, A
    Friedrich, R
    Peinke, J
    PHYSICAL REVIEW E, 1997, 56 (06): : 6719 - 6722
  • [4] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [5] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [6] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [7] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [8] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [9] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [10] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724