Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold

被引:28
作者
Koike, Ryotaro [1 ,2 ]
Kidera, Akinori [2 ,3 ,4 ]
Ota, Motonori [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi 4648601, Japan
[2] Japan Sci & Technol Agcy, Inst Bioinformat Res & Dev, Tokyo 1020081, Japan
[3] Yokohama City Univ, Grad Sch Nanobiosci, Yokohama, Kanagawa 2300045, Japan
[4] RIKEN, Res Program Computat Sci, Wako, Saitama 3510198, Japan
基金
日本科学技术振兴机构;
关键词
enzyme; evolution; superfamily; oligomerization; domain fusion; CRYSTAL-STRUCTURE REVEALS; 2.0 ANGSTROM RESOLUTION; ESCHERICHIA-COLI; 3-DIMENSIONAL STRUCTURE; COA-TRANSFERASE; ACTIVE-SITE; PROTEIN; COMPLEX; ENZYME; MECHANISM;
D O I
10.1002/pro.218
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand-binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.
引用
收藏
页码:2060 / 2066
页数:7
相关论文
共 50 条
  • [1] The crystal structure of the inhibitor-complexed carboxypeptidase D domain II and the modeling of regulatory carboxypeptidases
    Aloy, P
    Companys, V
    Vendrell, J
    Aviles, FX
    Fricker, LD
    Coll, M
    Gomis-Rüth, FX
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) : 16177 - 16184
  • [2] [Anonymous], 1993, NACCESS
  • [3] The Universal Protein Resource (UniProt) 2009
    Bairoch, Amos
    Consortium, UniProt
    Bougueleret, Lydie
    Altairac, Severine
    Amendolia, Valeria
    Auchincloss, Andrea
    Argoud-Puy, Ghislaine
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bolleman, Jerven
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    Bridge, Alan
    deCastro, Edouard
    Ciapina, Luciane
    Coral, Danielle
    Coudert, Elisabeth
    Cusin, Isabelle
    Delbard, Gwennaelle
    Dornevil, Dolnide
    Roggli, Paula Duek
    Duvaud, Severine
    Estreicher, Anne
    Famiglietti, Livia
    Feuermann, Marc
    Gehant, Sebastian
    Farriol-Mathis, Nathalie
    Ferro, Serenella
    Gasteiger, Elisabeth
    Gateau, Alain
    Gerritsen, Vivienne
    Gos, Arnaud
    Gruaz-Gumowski, Nadine
    Hinz, Ursula
    Hulo, Chantal
    Hulo, Nicolas
    James, Janet
    Jimenez, Silvia
    Jungo, Florence
    Junker, Vivien
    Kappler, Thomas
    Keller, Guillaume
    Lachaize, Corinne
    Lane-Guermonprez, Lydie
    Langendijk-Genevaux, Petra
    Lara, Vicente
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D169 - D174
  • [4] The generation of new protein functions by the combination of domains
    Bashton, Matthew
    Chothia, Cyrus
    [J]. STRUCTURE, 2007, 15 (01) : 85 - 99
  • [5] The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site
    Botos, I
    Melnikov, EE
    Cherry, S
    Tropea, JE
    Khalatova, AG
    Rasulova, F
    Dauter, Z
    Maurizi, MR
    Rotanova, TV
    Wlodawer, A
    Gustchina, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (09) : 8140 - 8148
  • [6] Branden C., 1998, Introduction to Protein Structure, V2nd ed.
  • [7] Crystal structure of thiaminase-I from Bacillus thiaminolyticus at 2.0 Å resolution
    Campobasso, N
    Costello, CA
    Kinsland, C
    Begley, TP
    Ealick, SE
    [J]. BIOCHEMISTRY, 1998, 37 (45) : 15981 - 15989
  • [8] Structural basis for the NAD-dependent deacetylase mechanism of Sir2
    Chang, JH
    Kim, HC
    Hwang, KY
    Lee, JW
    Jackson, SP
    Bell, SD
    Cho, Y
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) : 34489 - 34498
  • [9] Crystal structures of human DcpS in ligand-free and m7 GDP-bound forms suggest a dynamic mechanism for scavenger mRNA decapping
    Chen, N
    Walsh, MA
    Liu, YY
    Parker, R
    Song, HW
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2005, 347 (04) : 707 - 718
  • [10] PROTEINS - 1000 FAMILIES FOR THE MOLECULAR BIOLOGIST
    CHOTHIA, C
    [J]. NATURE, 1992, 357 (6379) : 543 - 544