Increasing the Number of Thyroid Lesions Classes in Microarray Analysis Improves the Relevance of Diagnostic Markers

被引:14
作者
Fontaine, Jean-Fred
Mirebeau-Prunier, Delphine
Raharijaona, Mahatsangy
Franc, Brigitte
Triau, Stephane
Rodien, Patrice
Goeau-Brissonniere, Olivier
Karayan-Tapon, Lucie
Mello, Marielle
Houlgatte, Remi
Malthiery, Yves
Savagner, Frederique
机构
[1] Max Delbrück Center for Molecular Medicine, Berlin
[2] INSERM, UMR 694, Angers
[3] Université d'Angers, Angers
[4] CHU Angers, Laboratoire de Biochimie, Angers
[5] INSERM, UMR 915, l'Institut du Thorax, Nantes
[6] Université de Nantes, Nantes
[7] Hôpital A Paré, Laboratoire d'Anatomie Pathologique, Boulogne
[8] CHU Angers, Laboratoire de Pathologie Cellulaire et Tissulaire, Angers
[9] CHU Angers, Département Endocrinologie-Diabétologie-Nutrition, Angers
[10] Hôpital A Paré, Service de Chirurgie Vasculaire, Boulogne
[11] Université de Poitiers, EA 3805, Poitiers
[12] INSERM, UMR136, Marseille
来源
PLOS ONE | 2009年 / 4卷 / 10期
关键词
GENE-EXPRESSION; TISSUE MICROARRAY; CARCINOMA; PAPILLARY; TUMORS; CANCER; CLASSIFICATION; PROFILES; METAANALYSIS; PROGRESSION;
D O I
10.1371/journal.pone.0007632
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings: Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPAR gamma, TSHR, GNAS and NRAS genes. Conclusion/Significance: We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas.
引用
收藏
页数:18
相关论文
共 51 条
  • [1] BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments
    Al-Shahrour, F
    Minguez, P
    Vaquerizas, JM
    Conde, L
    Dopazo, J
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W460 - W464
  • [2] Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes
    Aldred, MA
    Huang, Y
    Liyanarachchi, S
    Pellegata, NS
    Gimm, O
    Jhiang, S
    Davuluri, RV
    de La Chapelle, A
    Eng, C
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (17) : 3531 - 3539
  • [3] Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors
    Ao, Ada
    Wang, Heiman
    Kamarajugadda, Sushama
    Lu, Jianrong
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (22) : 7821 - 7826
  • [4] Barden CB, 2003, CLIN CANCER RES, V9, P1792
  • [5] Transcriptional profiling reveals coordinated up-regulation of oxidative metabolism genes in thyroid oncocytic tumors
    Baris, O
    Savagner, F
    Nasser, V
    Loriod, B
    Granjeaud, S
    Guyetant, S
    Franc, B
    Rodien, P
    Rohmer, V
    Bertucci, F
    Birnbaum, D
    Malthièry, Y
    Reynier, P
    Houlgatte, M
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 89 (02) : 994 - 1005
  • [6] Diagnostic value of differential expression of CK19, galectin-3, HBME-1, ERK, RET, and p16 in benign and malignant follicular-derived lesions of the thyroid: an immunohistochemical tissue microarray analysis
    Barroeta, J. E.
    Baloch, Z. W.
    Lal, P.
    Pasha, T. L.
    Zhang, P. J.
    LiVolsi, V. A.
    [J]. ENDOCRINE PATHOLOGY, 2006, 17 (03) : 225 - 234
  • [7] No evidence of thyrotropin receptor and GSα gene mutation in high iodine uptake thyroid carcinoma
    Bourasseau, I
    Savagner, F
    Rodien, P
    Duquenne, M
    Reynier, P
    Guyetant, S
    Bigorgne, JC
    Malthièry, Y
    Rohmer, V
    [J]. THYROID, 2000, 10 (09) : 761 - 765
  • [8] Potential markers of tongue tumor progression selected by cDNA microarray
    Carinci, F
    Lo Muzio, L
    Piattelli, A
    Rubini, C
    Chiesa, F
    Ionna, F
    Palmieri, A
    Maiorano, E
    Pastore, A
    Laino, G
    Favia, G
    Dolci, M
    Pezzetti, F
    [J]. INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2005, 18 (03): : 513 - 524
  • [9] Somatic and germline mutations of the TSH receptor and thyroid diseases
    Corvilain, B
    Van Sande, J
    Dumont, JE
    Vassart, G
    [J]. CLINICAL ENDOCRINOLOGY, 2001, 55 (02) : 143 - 158
  • [10] Gene expression and the biological phenotype of papillary thyroid carcinomas
    Delys, L.
    Detours, V.
    Franc, B.
    Thomas, G.
    Bogdanova, T.
    Tronko, M.
    Libert, F.
    Dumont, J. E.
    Maenhaut, C.
    [J]. ONCOGENE, 2007, 26 (57) : 7894 - 7903