Fabrication of biowaste derived carbon-carbon based electrodes for high-performance supercapacitor applications

被引:0
|
作者
Mitravinda, Tadepalli [1 ,2 ]
Karthik, Mani [1 ]
Anandan, Srinivasan [1 ]
Sharma, Chandra Shekar [2 ]
Rao, Tata Narasinga [1 ]
机构
[1] Int Adv Res Ctr Powder Met & New Mat, Ctr Nanomat, Hyderabad 500005, Telangana, India
[2] Indian Inst Technol Hyderabad, Dept Chem Engn, Hyderabad 502285, Telangana, India
关键词
Chemical activation; Supercapacitor; Even and uneven weight configuration; Weight balancing; Honeycomb; CARBON/CARBON SUPERCAPACITORS; ENERGY-DENSITY; NANOPOROUS CARBON; POROUS CARBON; GRAPHENE; CAPACITANCE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The porous carbon is synthesised by chemical activation using cork dust bio-waste as carbon source and the electrochemical performance of the resulting carbon material is tested in even and uneven weight configuration using a two-electrode system. The obtained cork dust derived activated carbon (CDAC) shown a unique honeycomb structured morphology as confirmed by morphological analysis. X-ray diffraction (XRD) and Raman characterisation revealed the graphitic nature of the CDAC. Furthermore, the porous CDAC exhibited high specific surface area (1707 m(2)/g) and large pore volume (2.4 cc/g) with an average pore size of 4 nm. Even weight supercapacitor cell (SC) (positive and negative electrode with the same weight) and uneven weight SC cell (weight ratio of positive/negative electrodes:1.2) are assembled and tested in 1M TEABF(4)/AN. Uneven weight SC cell delivers the highest specific capacitance value of 107 F/g at a current density of 1 A/g. The uneven weight device shows promising cyclic stability without significant changes in capacitance values after 10000 and 5000 charge-discharge cycles at the potential window of 3 V and 3.2 V, respectively. On the contrary, a less specific capacitance (87 F/g at a current density of 1 A/g) observed for the even weight SC cell though high-capacity retention is realised under the same experimental conditions. The enhanced supercapacitor performance of uneven weight configuration SC cell is attributed to the weight balancing of the electrode, high graphitic nature, and unique pore size distribution with interconnected morphology of CDAC.
引用
收藏
页码:1080 / 1090
页数:11
相关论文
共 50 条
  • [1] Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications
    Manimekala, T.
    Sivasubramanian, R.
    Karthikeyan, S.
    Dharmalingam, Gnanaprakash
    JOURNAL OF POROUS MATERIALS, 2023, 30 (01) : 289 - 301
  • [2] Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications
    T. Manimekala
    R. Sivasubramanian
    S. Karthikeyan
    Gnanaprakash Dharmalingam
    Journal of Porous Materials, 2023, 30 : 289 - 301
  • [3] Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes
    Lee, Jong-Hoon
    Lee, Seul-Yi
    Park, Soo-Jin
    NANOMATERIALS, 2023, 13 (05)
  • [4] High-Performance Supercapacitor Based on the NaOH Activated D-Glucose Derived Carbon
    Wu, Chao
    Xu, Jiang
    Ding, Jianning
    Yuan, Ningyi
    Yan, Pengtao
    Zhang, Ruijun
    Liu, Huihan
    NANO, 2016, 11 (07)
  • [5] Biomass-derived nanostructured carbon materials for high-performance supercapacitor electrodes
    Ebrahimi, Mehrnaz
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Mahdi, Fatemeh
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17363 - 17380
  • [6] Fabrication of High-Performance Asymmetric Supercapacitor Utilizing Tin Oxide Nanorods and Carbon-Based Electrodes
    Babu, I. Manohara
    Rathinamala, I.
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (01) : 547 - 556
  • [7] Hierarchical Porous Carbon with Interconnected Ordered Pores from Biowaste for High-Performance Supercapacitor Electrodes
    Bai, Xiaoxia
    Wang, Zhe
    Luo, Jingying
    Wu, Weiwei
    Liang, Yanping
    Tong, Xin
    Zhao, Zhenhuan
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [8] A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes
    Wang, Jian-Gan
    Yang, Ying
    Huang, Zheng-Hong
    Kang, Feiyu
    CARBON, 2013, 61 : 190 - 199
  • [9] Hierarchical Porous Carbon with Interconnected Ordered Pores from Biowaste for High-Performance Supercapacitor Electrodes
    Xiaoxia Bai
    Zhe Wang
    Jingying Luo
    Weiwei Wu
    Yanping Liang
    Xin Tong
    Zhenhuan Zhao
    Nanoscale Research Letters, 15
  • [10] Biomass-Derived Carbon Electrodes for High-Performance Supercapacitors
    Zhang, Liqiong
    Zhang, Yujie
    Jiao, Shenghui
    Zhang, Junliu
    Zhao, Xin
    Chen, Honglei
    Jiang, Jianchun
    CHEMSUSCHEM, 2023, 16 (13)