Potential of Genome Editing to Improve Aquaculture Breeding and Production

被引:124
作者
Gratacap, Remi L. [1 ]
Wargelius, Anna [2 ]
Edvardsen, Rolf Brudvik [2 ]
Houston, Ross D. [1 ]
机构
[1] Univ Edinburgh, Roslin Inst, Easter Bush Campus, Roslin EH25 9RG, Midlothian, Scotland
[2] Inst Marine Res, POB 1870, NO-5817 Bergen, Norway
基金
英国生物技术与生命科学研究理事会;
关键词
SALMO-SALAR L; INFECTIOUS PANCREATIC NECROSIS; LICE LEPEOPHTHEIRUS-SALMONIS; SCALE CRISPR-CAS9 KNOCKOUT; TRANSCRIPTIONAL ACTIVATION; ATLANTIC; EFFICIENT; GENE; RESISTANCE; DNA;
D O I
10.1016/j.tig.2019.06.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 91 条
[1]   Skeletal anomaly assessment in diploid and triploid juvenile Atlantic salmon (Salmo salar L.) and the effect of temperature in freshwater [J].
Amoroso, G. ;
Adams, M. B. ;
Ventura, T. ;
Carter, C. G. ;
Cobcroft, J. M. .
JOURNAL OF FISH DISEASES, 2016, 39 (04) :449-466
[2]  
[Anonymous], OECD FAO AGR OUTL 20
[3]  
[Anonymous], 2018 STAT WORLD FISH
[4]  
[Anonymous], 2019, MAR BIOTECHNOL
[5]  
[Anonymous], 2012, OECD ENV OUTL 2050
[6]   Engineering polydactyl zinc-finger transcription factors [J].
Beerli, RR ;
Barbas, CF .
NATURE BIOTECHNOLOGY, 2002, 20 (02) :135-141
[7]   Use of sterile triploid Atlantic salmon (Salmo salar L.) for aquaculture in New Brunswick, Canada [J].
Benfey, TJ .
ICES JOURNAL OF MARINE SCIENCE, 2001, 58 (02) :525-529
[8]   Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function [J].
Burkard, Christine ;
Lillico, Simon G. ;
Reid, Elizabeth ;
Jackson, Ben ;
Mileham, Alan J. ;
Ait-Ali, Tahar ;
Whitelaw, C. Bruce A. ;
Archibald, Alan L. .
PLOS PATHOGENS, 2017, 13 (02)
[9]  
Callaway E, 2018, NATURE, V560, P16, DOI 10.1038/d41586-018-05814-6
[10]   Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9 [J].
Chakrapani, Vemulawada ;
Patra, Swagat Kumar ;
Panda, Rudra Prasanna ;
Rasal, Kiran Dashrath ;
Jayasankar, Pallipuram ;
Barman, Hirak Kumar .
DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 2016, 61 :242-247