High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor

被引:202
作者
Xia, Qi Xun [1 ]
Fu, Jianjian [1 ]
Yun, Je Moon [2 ]
Mane, Rajaram S. [2 ]
Kim, Kwang Ho [1 ,2 ]
机构
[1] Pusan Natl Univ, Sch Mat Sci & Engn, San 30 Jangjeon Dong, Busan 609735, South Korea
[2] Pusan Natl Univ, Global Frontier R&D Ctr Hybrid Interface Mat, San 30 Jangjeon Dong, Busan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
MICRO-SUPERCAPACITORS; ELECTRODE MATERIAL; CARBON; GRAPHENE; OXIDATION; ANODE; GAS; LI; INTERCALATION; CAPACITANCE;
D O I
10.1039/c6ra27880a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A Ti3C2Tx MXene electrode decorated with NiO nanosheets was synthesized by a facile and cost-effective hydrothermal method. The NiO nanosheets were grown and immobilized on the carbon-supported TiO2 layer which was derived from Ti3C2Tx-MXene during a thermal annealing process. An electrode based on the NiO-grown derived-TiO2/C-Ti3C2Tx-MXene nanocomposite (Ni-dMXNC) exhibited a remarkable maximum specific capacity of 92.0 mA h cm(-3) at 1 A g(-1) and 53.9 mA h cm(-3) at 10 A g(-1). Furthermore, an asymmetric supercapacitor (ASC) device composed of Ni-dMXNC as the positive electrode and Ti3C2Tx MXene as the negative electrode was demonstrated to be better with a high energy density of 1.04 X 10(-2) W h cm(-3) at a power density of 0.22 W cm(-3), and cycling stability with 72.1% retention after 5000 cycles, compared to ASCs using previously reported Ti3C2Tx MXene materials. The enhanced capacitive performance is attributed to the newly formed high surface-area multilayers of the Ni-dMXNC architecture, the active surface of NiO layer, and a favourable synergetic behaviour of the Ti3C2Tx MXene negative electrode.
引用
收藏
页码:11000 / 11011
页数:12
相关论文
共 68 条
[1]  
Barsoum MW, 2013, MAX PHASES: PROPERTIES OF MACHINABLE TERNARY CARBIDES AND NITRIDES, P1, DOI 10.1002/9783527654581
[2]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[5]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm201301851, 10.1002/adfm.201301851]
[6]   Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings [J].
Dang, Binh H. Q. ;
Rahman, Mahfujur ;
MacElroy, Don ;
Dowling, Denis P. .
SURFACE & COATINGS TECHNOLOGY, 2012, 206 (19-20) :4113-4118
[7]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Surface characterization study of Au/alpha-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts [J].
Epling, WS ;
Hoflund, GB ;
Weaver, JF ;
Tsubota, S ;
Haruta, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (23) :9929-9934
[9]   Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries [J].
Er, Dequan ;
Li, Junwen ;
Naguib, Michael ;
Gogotsi, Yury ;
Shenoy, Vivek B. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :11173-11179
[10]   RETRACTED: High-Volumetric Performance Aligned Nano-Porous Microwave Exfoliated Graphite Oxide-based Electrochemical Capacitors (Retracted article. See vol. 28, pg. 9453, 2016) [J].
Ghaffari, Mehdi ;
Zhou, Yue ;
Xu, Haiping ;
Lin, Minren ;
Kim, Tae Young ;
Ruoff, Rodney S. ;
Zhang, Q. M. .
ADVANCED MATERIALS, 2013, 25 (35) :4879-4885