Robust approximation in a filtering problem with real state space and counting observations

被引:3
作者
Calzolari, A
Nappo, G
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Rome La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
filtering; counting process; jump Markov process; coupling;
D O I
10.1007/s002450010002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X-t, Y-t) be a pure jump Markov process, where X-t takes values in R and Y-t is a counting process. We compare the filter of this system and a filter of a suitably modified system. We compute an explicit bound for the distance in the so-called bounded Lipschitz metric between the two filters. Finally we show how to use this bound to construct a discrete space approximation of the filter.
引用
收藏
页码:51 / 71
页数:21
相关论文
共 16 条
[1]  
[Anonymous], STOCHASTICS STOCHAST
[2]  
ARJAS E, 1997, UNPUB NOTE SENSITIVI
[3]   Exponential stability for nonlinear filtering [J].
Atar, R ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (06) :697-725
[4]  
ATAR R, 1998, ROBUSTNESS ZAKAIS EQ
[5]  
Bremaud P., 1981, Point Processes and Queues: Martingale Dynamics
[6]   The Feynman-Stratonovich semigroup and Stratonovich integral expansions in nonlinear filtering [J].
Budhiraja, A ;
Kallianpur, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 35 (01) :91-116
[7]   Robustness of nonlinear filters over the infinite time interval [J].
Budhiraja, A ;
Kushner, HJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) :1618-1637
[8]   Exponential stability of discrete-time filters for bounded observation noise [J].
Budhiraja, A ;
Ocone, D .
SYSTEMS & CONTROL LETTERS, 1997, 30 (04) :185-193
[9]  
CALZOLARI A, 1996, STOCHASTICS STOCHAST, V57, P71
[10]  
CALZOLARI A, 1997, 9746 U ROM LA SAP