Spectroscopic characterization of synthetic becquerelite, Ca[(UO2)6O4(OH)6]•8H2O, and swartzite, CaMg[UO2(CO3)3]•12H2O

被引:23
|
作者
Amayri, S [1 ]
Arnold, T [1 ]
Foerstendorf, H [1 ]
Geipel, G [1 ]
Bernhard, G [1 ]
机构
[1] Forschungszentrum Rossendorf EV, Inst Radiochem, D-01314 Dresden, Germany
来源
CANADIAN MINERALOGIST | 2004年 / 42卷
关键词
uranium; synthesis; TRLFS spectroscopy; FTIR; spectroscopy;
D O I
10.2113/gscanmin.42.4.953
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
Becquerelite, Ca[(UO2)(6)O-4(OH)(6)].8H(2)O, and swartzite, CaMg[UO2(CO3)(3)].12H(2)O, have been synthesized and identified by X-ray powder diffraction (XRD). Chemical compositions were verified by ICP-MS and AAS. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) and Fourier-transformed infrared spectroscopy (FTIR) were used for the first time to characterize these phases. In becquerelite, there are four fluorescence emission bands, at 518.9, 535.6, 553.4, and 578.9 nm, and a characteristic fluorescence lifetime of 3.1 +/- 0.21 mus. Swartzite shows six characteristic fluorescence emission bands, at 472.3, 488.9, 509.0, 531.1, 554.7, and 578.9 nm, and a fluorescence lifetime of 59.4 +/- 0.1 mus. The FTIR spectra of becquerelite are characterized by an intense asymmetric stretching vibration (nu(3) UO22+ mode) band at 946 cm(-1), with shoulders at approximately 925 and 902 cm(-1). Swartzite shows its characteristic nu(3) UO22+ mode of the uranyl cation at 898 cm(-1). As natural U6+-bearing samples commonly form thin coatings on rock or mineral surfaces or as a component mixed with other solids, it is generally difficult to identify small quantities of these secondary phases. Spectroscopic methods like TRLFS and FTIR spectroscopy are found to be promising methods to identify such secondary phases.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 50 条
  • [31] Synthesis and characterization of francoisite-(Nd): Nd[(UO2)3O(OH)(PO4)2]•6H2O
    Armstrong, Christopher R.
    Nash, Kenneth L.
    Griffiths, Peter R.
    Clark, Sue B.
    AMERICAN MINERALOGIST, 2011, 96 (2-3) : 417 - 422
  • [32] STUDY OF CRYSTALLINE-STRUCTURE OF PHOSPHYRANYLITE CA[(UO2)3(PO4)2(OH)2].6H2O
    SHASHKIN, DP
    SIDORENKO, GA
    DOKLADY AKADEMII NAUK SSSR, 1975, 220 (05): : 1161 - 1164
  • [33] Successive Crystallization of Organically Templated Uranyl Sulfates: Synthesis and Crystal Structures of [pyH](H3O)[(UO2)3(SO4)4(H2O)2], [pyH]2[(UO2)6(SO4)7(H2O)], and [pyH]2[(UO2)2(SO4)3]
    Nazarchuk, Evgeny V.
    Charkin, Dmitri O.
    Siidra, Oleg I.
    CHEMENGINEERING, 2021, 5 (01) : 1 - 8
  • [34] The crystal structure of synthetic grimselite, K3Na[(UO2)(CO3)3](H2O)
    Li, YP
    Burns, PC
    CANADIAN MINERALOGIST, 2001, 39 (04): : 1147 - 1151
  • [35] Linekite, K2Ca3[(UO2)(CO3)3]2•8H2O, a new uranyl carbonate mineral from Jachymov, Czech Republic
    Plasil, Jakub
    Cejka, Jiri
    Sejkora, Jiri
    Hlousek, Jan
    Skoda, Radek
    Novak, Milan
    Dusek, Michal
    Cisarova, Ivana
    Nemec, Ivan
    Ederova, Jana
    JOURNAL OF GEOSCIENCES, 2017, 62 (03) : 201 - 213
  • [36] Crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2 • 10H2O
    Baeva, E. E.
    Virovets, A. V.
    Peresypkina, E. V.
    Serezhkina, L. B.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2006, 51 (02) : 220 - 228
  • [37] Na(H3O)(UO2)3(SeO3)2O2•4H2O
    不详
    CANADIAN MINERALOGIST, 2004, 42 : 1911 - 1911
  • [38] Crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2 · 10H2O
    E. E. Baeva
    A. V. Virovets
    E. V. Peresypkina
    L. B. Serezhkina
    Russian Journal of Inorganic Chemistry, 2006, 51 : 220 - 228
  • [39] Raman spectroscopic study of the uranyl selenite mineral marthozite Cu[(UO2)3(SeO3)2O2].8H2O
    Frost, Ray L.
    Cejka, Jiri
    Keefe, Eloise C.
    Dickfos, Marilla J.
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) : 1413 - 1418
  • [40] CRYSTALLINE-STRUCTURE OF MG(UO2)6(MOO4)7.18H2O AND SR(UO2)6(MOO4)7.15H2O
    TABACHENKO, VV
    KOVBA, LM
    SEREZHKIN, VN
    KOORDINATSIONNAYA KHIMIYA, 1984, 10 (04): : 558 - 562