Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia

被引:80
作者
Gonzalez-Gonzalez, Lina Maria [1 ]
de-Bashan, Luz E. [1 ,2 ,3 ]
机构
[1] Bashan Inst Sci, 1730 Post Oak Ct, Auburn, AL 36830 USA
[2] Northwestern Ctr Biol Res CIBNOR, Environm Microbiol Grp, Ave IPN 195, La Paz 23096, Baja California, Mexico
[3] Auburn Univ, Dept Entomol & Plant Pathol, 209 Life Sci Bldg, Auburn, AL 36849 USA
来源
BIOLOGY-BASEL | 2021年 / 10卷 / 04期
关键词
mutualism; microalgae; growth-promoting bacteria; metabolites; biorefinery;
D O I
10.3390/biology10040282
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary Microalgae are photosynthetic microorganisms with high biotechnological potential. However, the sustainable production of high-value products such as lipids, proteins, carbohydrates, and pigments undergoes important economic challenges. In this review, we describe the mutualistic association between microalgae and bacteria and the positive effects of artificial consortia on microalgal metabolites' production. We highlighted the potential role of growth-promoting bacteria in optimizing microalgal biorefineries for the integrated production of these valuable products. Besides making a significant enhancement to microalgal metabolite production, the bacterium partner might assist in the biorefinery process's key stages, such as biomass harvesting and CO2 fixation. Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
引用
收藏
页数:20
相关论文
共 148 条
[31]   Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization) [J].
de-Bashan, Luz E. ;
Mayali, Xavier ;
Bebout, Brad M. ;
Weber, Peter K. ;
Detweiler, Angela M. ;
Hernandez, Juan-Pablo ;
Prufert-Bebout, Leslie ;
Bashan, Yoav .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 15 :179-186
[32]   CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS [J].
de-Bashan, Luz E. ;
Schmid, Michael ;
Rothballer, Michael ;
Hartmann, Anton ;
Bashan, Yoav .
JOURNAL OF PHYCOLOGY, 2011, 47 (06) :1350-1359
[33]   Production of microalgae using centrate from anaerobic digestion as the nutrient source [J].
del Mar Morales-Amaral, Maria ;
Gomez-Serrano, Cintia ;
Gabriel Acien, F. ;
Fernandez-Sevilla, Jose M. ;
Molina-Grima, E. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2015, 9 :297-305
[34]   High lipid productivity of an Ankistrodesmus-Rhizobium artificial consortium [J].
Do Nascimento, Mauro ;
de los Angeles Dublan, Maria ;
Federico Ortiz-Marquez, Juan Cesar ;
Curatti, Leonardo .
BIORESOURCE TECHNOLOGY, 2013, 146 :400-407
[35]   The evolution of interspecific mutualisms [J].
Doebeli, M ;
Knowlton, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8676-8680
[36]   Synthetic ecology: A model system for cooperation [J].
Dunham, Maitreya J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1741-1742
[37]   Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy [J].
Fabris, Michele ;
Abbriano, Raffaela M. ;
Pernice, Mathieu ;
Sutherland, Donna L. ;
Commault, Audrey S. ;
Hall, Christopher C. ;
Labeeuw, Leen ;
McCauley, Janice, I ;
Kuzhiuparambil, Unnikrishnan ;
Ray, Parijat ;
Kahlke, Tim ;
Ralph, Peter J. .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[38]   Scenedesmus obliquus microalga-based biorefinery - from brewery effluent to bioactive compounds, biofuels and biofertilizers - aiming at a circular bioeconomy [J].
Ferreira, Alice ;
Ribeiro, Belina ;
Ferreira, Ana F. ;
Tavares, Marileide L. A. ;
Vladic, Jelena ;
Vidovic, Senka ;
Cvetkovic, Dragoljub ;
Melkonyan, Lusine ;
Avetisova, Gayane ;
Goginyan, Vigen ;
Gouveia, Luisa .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (05) :1169-1186
[39]   A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles [J].
Ferreira, G. F. ;
Rios Pinto, L. F. ;
Maciel Filho, R. ;
Fregolente, L. V. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 109 :448-466
[40]   Influence of bacteria on the response of microalgae to contaminant mixtures [J].
Fouilland, Eric ;
Gales, Amandine ;
Beaugelin, Ines ;
Lanouguere, Elodie ;
Pringault, Olivier ;
Leboulanger, Christophe .
CHEMOSPHERE, 2018, 211 :449-455