Maximum Likelihood Estimation and Optimal Coordinates

被引:0
|
作者
Spurek, P. [1 ]
Tabor, J. [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
ADVANCES IN SYSTEMS SCIENCE, ICSS 2016 | 2017年 / 539卷
关键词
Maximum likelihood estimation; Cross-entropy; Gaussian distribution; INEQUALITY;
D O I
10.1007/978-3-319-48944-5_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that the MLE (maximum likelihood estimation) in the class of Gaussian densities can be understood as the search for the best coordinate system which "optimally" underlines the internal structure of the data. This allows in particular to the search for the optimal coordinate system when the origin is fixed in a given point.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 50 条
  • [41] Robust adaptive beamforming based on maximum likelihood estimation
    Sun, Xinyu
    Lian, Xiaohua
    Zhou, Jianjiang
    2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 1137 - 1140
  • [43] Bayesian versus Maximum Likelihood Estimation in DSGE Modelling
    Hudea , Oana Simona
    ENTREPRENEURSHIP EDUCATION - A PRIORITY FOR THE HIGHER EDUCATION INSTITUTIONS, 2012, : 108 - 111
  • [44] Asymptotic Properties of Recursive Particle Maximum Likelihood Estimation
    Tadic, Vladislav Z. B.
    Doucet, Arnaud
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1825 - 1848
  • [45] Maximum likelihood estimation of time-inhomogeneous diffusions
    Egorov, AV
    Li, HT
    Xu, YW
    JOURNAL OF ECONOMETRICS, 2003, 114 (01) : 107 - 139
  • [46] Maximum likelihood estimation of smooth monotone and unimodal densities
    Eggermont, PPB
    LaRiccia, VN
    ANNALS OF STATISTICS, 2000, 28 (03) : 922 - 947
  • [47] Maximum Likelihood Estimation-Based SAR ADC
    Jayaraj, Akshay
    Chandrasekaran, Sanjeev Tannirkulam
    Ganesh, Archana
    Banerjee, Imon
    Sanyal, Arindam
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (08) : 1311 - 1315
  • [48] Nearly unbiased maximum likelihood estimation for the beta distribution
    Cribari-Neto, F
    Vasconcellos, KLP
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (02) : 107 - 118
  • [49] A depth recovery algorithm for using the maximum likelihood estimation
    Zhang, Hong
    Lei, Qiong
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 132 - 135
  • [50] MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN A PERTURBED EXPONENTIAL MODEL
    Nanjundan, G.
    Naika, T. Raveendra
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2011, 7 (02): : 527 - 534