Maximum Likelihood Estimation and Optimal Coordinates

被引:0
作者
Spurek, P. [1 ]
Tabor, J. [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
ADVANCES IN SYSTEMS SCIENCE, ICSS 2016 | 2017年 / 539卷
关键词
Maximum likelihood estimation; Cross-entropy; Gaussian distribution; INEQUALITY;
D O I
10.1007/978-3-319-48944-5_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that the MLE (maximum likelihood estimation) in the class of Gaussian densities can be understood as the search for the best coordinate system which "optimally" underlines the internal structure of the data. This allows in particular to the search for the optimal coordinate system when the origin is fixed in a given point.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 20 条
[1]  
[Anonymous], SPRINGER HDB COMPUTA
[2]  
[Anonymous], 2002, Applied Multivariate Analysis
[3]  
[Anonymous], 1988, HDB STAT
[4]  
[Anonymous], PARAMETER ESTIMATION
[5]  
[Anonymous], 2010, Modern multidimensional scaling: theory and applications
[6]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[7]   AN INVERSE MATRIX ADJUSTMENT ARISING IN DISCRIMINANT ANALYSIS [J].
BARTLETT, MS .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :107-111
[8]   GAUSSIAN PARSIMONIOUS CLUSTERING MODELS [J].
CELEUX, G ;
GOVAERT, G .
PATTERN RECOGNITION, 1995, 28 (05) :781-793
[9]  
Cover TM., 1991, ELEMENTS INFORM THEO, V1, P279
[10]   The Mahalanobis distance [J].
De Maesschalck, R ;
Jouan-Rimbaud, D ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (01) :1-18