Entangled quantum particles in an infinite square well: knowledge of the whole versus knowledge of the parts

被引:3
作者
Odendaal, R. Q. [2 ]
Plastino, A. R. [1 ,3 ]
机构
[1] Natl Univ La Plata, CREG, CONICET, RA-1900 La Plata, Argentina
[2] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
关键词
Quantum optics - Tensors;
D O I
10.1088/0143-0807/31/1/017
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Entangled states of composite quantum systems exhibit one of the most distinct and non-classical features of the quantum mechanical description of Nature, first pointed out by Schroedinger: 'Maximal knowledge of a total system does not necessarily imply maximal knowledge of all its parts'. We provide an elementary illustration of this fundamental aspect of quantum physics by considering a system of two particles in an infinite, one-dimensional square potential well. In contrast to standard introductory presentations of quantum entanglement, our present considerations do not require density matrix formalism, nor explicit use of the tensor product structure for the description of composite quantum systems.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 25 条
  • [1] [Anonymous], 1978, An Introduction to Quantum Physics
  • [2] Entanglement, mixedness, and q-entropies
    Batle, J
    Casas, M
    Plastino, AR
    Plastino, A
    [J]. PHYSICS LETTERS A, 2002, 296 (06) : 251 - 258
  • [3] Bengtsson I., 2006, Geometry of Quantum States: An Introduction to Quantum Entanglement
  • [4] Entanglement and the quantum brachistochrone problem
    Borras, A.
    Zander, C.
    Plastino, A. R.
    Casas, M.
    Plastino, A.
    [J]. EPL, 2008, 81 (03)
  • [5] Chuang I.L., 2000, QUANTUM COMPUTATION
  • [6] Two particles in a double well: illustrating the connection between entanglement and the speed of quantum evolution
    Curilef, S.
    Zander, C.
    Plastino, A. R.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (05) : 1193 - 1203
  • [7] CONTEXTUALITY IN QUANTUM-SYSTEMS
    DELATORRE, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1994, 62 (09) : 808 - 812
  • [8] ENTANGLED QUANTUM-SYSTEMS AND THE SCHMIDT DECOMPOSITION
    EKERT, A
    KNIGHT, PL
    [J]. AMERICAN JOURNAL OF PHYSICS, 1995, 63 (05) : 415 - 423
  • [9] Gemmer J., 2004, LECT NOTES PHYS
  • [10] GILLESPIE DT, 1970, QUANTUM MECH PRIMER