Effect of noise correlations on randomized benchmarking

被引:65
作者
Ball, Harrison [1 ,2 ]
Stace, Thomas M. [3 ]
Flammia, Steven T. [1 ]
Biercuk, Michael J. [1 ,2 ]
机构
[1] Univ Sydney, Sch Phys, ARC Ctr Excellence Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Australian Natl Measurement Inst, West Lindfield, NSW 2070, Australia
[3] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevA.93.022303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Among the most popular and well-studied quantum characterization, verification, and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a Gamma distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes-consistent with existing experimental data-highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome fromworst-case errors in the presence of noise correlations. We use the filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.
引用
收藏
页数:23
相关论文
共 35 条
[1]  
[Anonymous], Probability, Random Variables and Stochastic Processes
[2]   Magnetic Flux Noise in dc SQUIDs: Temperature and Geometry Dependence [J].
Anton, S. M. ;
Birenbaum, J. S. ;
O'Kelley, S. R. ;
Bolkhovsky, V. ;
Braje, D. A. ;
Fitch, G. ;
Neeley, M. ;
Hilton, G. C. ;
Cho, H. -M. ;
Irwin, K. D. ;
Wellstood, F. C. ;
Oliver, W. D. ;
Shnirman, A. ;
Clarke, John .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[3]  
Barz S, 2013, NAT PHYS, V9, P727, DOI [10.1038/NPHYS2763, 10.1038/nphys2763]
[4]   Selective and efficient estimation of parameters for quantum process tomography [J].
Bendersky, Ariel ;
Pastawski, Fernando ;
Paz, Juan Pablo .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[5]  
Biercuk MJ, 2009, QUANTUM INF COMPUT, V9, P920
[6]   Single-qubit-gate error below 10-4 in a trapped ion [J].
Brown, K. R. ;
Wilson, A. C. ;
Colombe, Y. ;
Ospelkaus, C. ;
Meier, A. M. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[7]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[8]   Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [J].
Chow, J. M. ;
Gambetta, J. M. ;
Tornberg, L. ;
Koch, Jens ;
Bishop, Lev S. ;
Houck, A. A. ;
Johnson, B. R. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[9]   Scalable noise estimation with random unitary operators [J].
Emerson, J ;
Alicki, R ;
Zyczkowski, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S347-S352
[10]   Investigating the limits of randomized benchmarking protocols [J].
Epstein, Jeffrey M. ;
Cross, Andrew W. ;
Magesan, Easwar ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2014, 89 (06)