Administrative Regions Discovery Based on Human Mobility Patterns and Spatio-Temporal Clustering

被引:0
作者
Nunez-del-Prado-Cortez, Miguel [1 ]
Alatrista-Salas, Hugo [1 ]
机构
[1] Univ Pacifico, Ave Salaverry 2020, Lima, Peru
来源
PROCEEDINGS 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS 2016) | 2016年
关键词
Mobility model; Mobility Markov chain; administrative region; clustering; region interactions;
D O I
10.1109/MASS.2016.58
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, the understanding of the human mobility is an important challenge that has a large number of applications, especially in the study of a nations ability to thrive economically and socially. Some works have shown that, it is possible to observe developed and developing countries reviewing their administrative regions borders, in order to reduce costs, or to solve ethnic claims and/or independence movements. In this context, the present work leverages mobile phone data to analyze human mobility patterns. Specifically, we propose a new method to detect administrative regions and paths of interaction between regions, both relying on subscribers mobility patterns extracted from Call Detail Records (CDR). Thus, our method offers a different point of view to redefine administrative boundaries.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
[31]   TweeProfiles3: visualization of spatio-temporal patterns on Twitter [J].
Maia, Andre ;
Cunha, Tiago ;
Soares, Carlos ;
Abreu, Pedro Henriques .
NEW ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2016, 444 :869-878
[32]   Spatio-temporal clustering and density estimation of lightning data for the tracking of convective events [J].
Strauss, Cesar ;
Rosa, Marcelo Barbio ;
Stephany, Stephan .
ATMOSPHERIC RESEARCH, 2013, 134 :87-99
[33]   Uncovering migration systems through spatio-temporal tensor co-clustering [J].
Almquist, Zack W. ;
Nguyen, Tri Duc ;
Sorensen, Mikael ;
Fu, Xiao ;
Sidiropoulos, Nicholas D. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[34]   An Improved Clustering Approach for Identifying Significant Locations from Spatio-temporal Data [J].
Rigzin Angmo ;
Naveen Aggarwal ;
Veenu Mangat ;
Anurag Lal ;
Simarpreet Kaur .
Wireless Personal Communications, 2021, 121 :985-1009
[35]   An Improved Clustering Approach for Identifying Significant Locations from Spatio-temporal Data [J].
Angmo, Rigzin ;
Aggarwal, Naveen ;
Mangat, Veenu ;
Lal, Anurag ;
Kaur, Simarpreet .
WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (01) :985-1009
[36]   Indexing Multivariate Mobile Data through Spatio-Temporal Event Detection and Clustering [J].
Rawassizadeh, Reza ;
Dobbins, Chelsea ;
Akbari, Mohammad ;
Pazzani, Michael .
SENSORS, 2019, 19 (03)
[37]   Key Concepts of group pattern discovery algorithms from spatio-temporal trajectories [J].
Dluzniak, Karolina K. ;
Tie, Wei ;
Wang, Hai ;
Xing, Wei .
2019 15TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG 2019), 2019, :190-197
[38]   Detection of spatio-temporal evolutions on multi-annual satellite image time series: A clustering based approach [J].
Khiali, Lynda ;
Ndiath, Mamoudou ;
Alleaume, Samuel ;
Ienco, Dino ;
Ose, Kenji ;
Teisseire, Maguelonne .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 74 :103-119
[39]   MoveSense: spatio-temporal Clustering Technique for Discovering Residence Change in Mobile Phone Data [J].
Matekenya, Dunstan ;
Ito, Masaki ;
Tobe, Yoshito ;
Shibasaki, Ryosuke ;
Sezaki, Kaoru .
PROCEEDINGS OF THE 6TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON GEOSTREAMING (IWGS) 2015, 2015, :59-68
[40]   Spatio-Temporal Patterns of Dengue Incidence in Medan City, North Sumatera, Indonesia [J].
Pasaribu, Ayodhia Pitaloka ;
Tsheten, Tsheten ;
Yamin, Muhammad ;
Maryani, Yulia ;
Fahmi, Fahmi ;
Clements, Archie C. A. ;
Gray, Darren J. ;
Wangdi, Kinley .
TROPICAL MEDICINE AND INFECTIOUS DISEASE, 2021, 6 (01)