Identification of stem cells from large cell populations with topological scoring

被引:4
作者
Sardiu, Mihaela E. [1 ]
Box, Andrew C. [1 ]
Haug, Jeffrey S. [1 ]
Washburn, Michael P. [1 ,2 ]
机构
[1] Stowers Inst Med Res, 1000 E 50th St, Kansas City, MO 64110 USA
[2] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, 3901 Rainbow Blvd, Kansas City, KS 66160 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1039/d0mo00039f
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning and topological analysis methods are becoming increasingly used on various large-scale omics datasets. Modern high dimensional flow cytometry data sets share many features with other omics datasets like genomics and proteomics. For example, genomics or proteomics datasets can be sparse and have high dimensionality, and flow cytometry datasets can also share these features. This makes flow cytometry data potentially a suitable candidate for employing machine learning and topological scoring strategies, for example, to gain novel insights into patterns within the data. We have previously developed a Topological Score (TopS) and implemented it for the analysis of quantitative protein interaction network datasets. Here we show that TopS approach for large scale data analysis is applicable to the analysis of a previously described flow cytometry sorted human hematopoietic stem cell dataset. We demonstrate that TopS is capable of effectively sorting this dataset into cell populations and identify rare cell populations. We demonstrate the utility of TopS when coupled with multiple approaches including topological data analysis, X-shift clustering, and t-Distributed Stochastic Neighbor Embedding (t-SNE). Our results suggest that TopS could be effectively used to analyze large scale flow cytometry datasets to find rare cell populations.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 27 条
[1]   Using Visualization of t-Distributed Stochastic Neighbor Embedding To Identify Immune Cell Subsets in Mouse Tumors [J].
Acuff, Nicole V. ;
Linden, Joel .
JOURNAL OF IMMUNOLOGY, 2017, 198 (11) :4539-4546
[2]   Methods for the integration of multi-omics data: mathematical aspects [J].
Bersanelli, Matteo ;
Mosca, Ettore ;
Remondini, Daniel ;
Giampieri, Enrico ;
Sala, Claudia ;
Castellani, Gastone ;
Milanesi, Luciano .
BMC BIOINFORMATICS, 2016, 17
[3]  
Camara Pablo G, 2017, Curr Opin Syst Biol, V1, P95, DOI 10.1016/j.coisb.2016.12.007
[4]   Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination [J].
Camara, Pablo G. ;
Rosenbloom, Daniel I. S. ;
Emmett, Kevin J. ;
Levine, Arnold J. ;
Rabadan, Raul .
CELL SYSTEMS, 2016, 3 (01) :83-94
[5]   Convex Clustering: An Attractive Alternative to Hierarchical Clustering [J].
Chen, Gary K. ;
Chi, Eric C. ;
Ranola, John Michael O. ;
Lange, Kenneth .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (05)
[6]   Biochemical Reduction of the Topology of the Diverse WDR76 Protein Interactome [J].
Dayebgadoh, Gerald ;
Sardiu, Mihaela E. ;
Florens, Laurence ;
Washburn, Michael P. .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (09) :3479-3491
[7]   Quantitative Comparison of Conventional and t-SNE-guided Gating Analyses [J].
Eshghi, Shadi Toghi ;
Au-Yeung, Amelia ;
Takahashi, Chikara ;
Bolen, Christopher R. ;
Nyachienga, Maclean N. ;
Lear, Sean P. ;
Green, Cherie ;
Mathews, W. Rodney ;
O'Gorman, William E. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[8]   Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations [J].
Gossez, Morgane ;
Rimmele, Thomas ;
Andrieu, Thibault ;
Debord, Sophie ;
Bayle, Frederique ;
Malcus, Christophe ;
Poitevin-Later, Francoise ;
Monneret, Guillaume ;
Venet, Fabienne .
SCIENTIFIC REPORTS, 2018, 8
[9]   Multi-omics approaches to disease [J].
Hasin, Yehudit ;
Seldin, Marcus ;
Lusis, Aldons .
GENOME BIOLOGY, 2017, 18
[10]   A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data [J].
Kimball, Abigail K. ;
Oko, Lauren M. ;
Bullock, Bonnie L. ;
Nemenoff, Raphael A. ;
van Dyk, Linda F. ;
Clambey, Eric T. .
JOURNAL OF IMMUNOLOGY, 2018, 200 (01) :3-22