Retrieving Sea Ice Drag Coefficients and Turning Angles From In Situ and Satellite Observations Using an Inverse Modeling Framework

被引:18
作者
Heorton, H. D. B. S. [1 ]
Tsamados, M. [1 ]
Cole, S. T. [2 ]
Ferreira, A. M. G. [1 ,3 ]
Berbellini, A. [1 ]
Fox, M. [1 ]
Armitage, T. W. K. [4 ]
机构
[1] UCL, Dept Earth Sci, London, England
[2] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[3] Univ Lisbon, Inst Super Tecn, CERIS, Lisbon, Portugal
[4] CALTECH, Jet Prop Lab, Pasadena, CA USA
基金
英国自然环境研究理事会; 美国国家航空航天局;
关键词
sea ice drift; observations; inverse modeling; drag coefficients; WESTERN ARCTIC-OCEAN; FRESH-WATER; NEIGHBORHOOD ALGORITHM; GEOPHYSICAL INVERSION; INTERNAL WAVES; SURFACE STRESS; FORM DRAG; IMPACT; HEAT; SIMULATIONS;
D O I
10.1029/2018JC014881
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
For ice concentrations less than 85%, internal ice stresses in the sea ice pack are small and sea ice is said to be in free drift. The sea ice drift is then the result of a balance between Coriolis acceleration and stresses from the ocean and atmosphere. We investigate sea ice drift using data from individual drifting buoys as well as Arctic-wide gridded fields of wind, sea ice, and ocean velocity. We perform probabilistic inverse modeling of the momentum balance of free-drifting sea ice, implemented to retrieve the Nansen number, scaled Rossby number, and stress turning angles. Since this problem involves a nonlinear, underconstrained system, we used a Monte Carlo guided search scheme-the Neighborhood Algorithm-to seek optimal parameter values for multiple observation points. We retrieve optimal drag coefficients of C-A = 1.2 x 10(-3) and C-O = 2.4 x 10(-3) from 10-day averaged Arctic-wide data from July 2014 that agree with the AIDJEX standard, with clear temporal and spatial variations. Inverting daily averaged buoy data give parameters that, while more accurately resolved, suggest that the forward model oversimplifies the physical system at these spatial and temporal scales. Our results show the importance of the correct representation of geostrophic currents. Both atmospheric and oceanic drag coefficients are found to decrease with shorter temporal averaging period, informing the selection of drag coefficient for short timescale climate models.
引用
收藏
页码:6388 / 6413
页数:26
相关论文
共 65 条
  • [1] THE ROLE OF SEA ICE AND OTHER FRESH-WATER IN THE ARCTIC CIRCULATION
    AAGAARD, K
    CARMACK, EC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C10) : 14485 - 14498
  • [2] Parametrizing turbulent exchange over summer sea ice and the marginal ice zone
    Andreas, Edgar L.
    Horst, Thomas W.
    Grachev, Andrey A.
    Persson, P. Ola G.
    Fairall, Christopher W.
    Guest, Peter S.
    Jordan, Rachel E.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (649) : 927 - 943
  • [3] Arctic Ocean surface geostrophic circulation 2003-2014
    Armitage, Thomas W. K.
    Bacon, Sheldon
    Ridout, Andy L.
    Petty, Alek A.
    Wolbach, Steven
    Tsamados, Michel
    [J]. CRYOSPHERE, 2017, 11 (04) : 1767 - 1780
  • [4] Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014
    Armitage, Thomas W. K.
    Bacon, Sheldon
    Ridout, Andy L.
    Thomas, Sam F.
    Aksenov, Yevgeny
    Wingham, Duncan J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (06) : 4303 - 4322
  • [5] Crustal structure of northern Italy from the ellipticity of Rayleigh waves
    Berbellini, Andrea
    Morelli, Andrea
    Ferreira, Ana M. G.
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2017, 265 : 1 - 14
  • [6] TOWARD QUANTIFYING THE INCREASING ROLE OF OCEANIC HEAT IN SEA ICE LOSS IN THE NEW ARCTIC
    Carmack, E.
    Polyakov, I.
    Padman, L.
    Fer, I.
    Hunke, E.
    Hutchings, J.
    Jackson, J.
    Kelley, D.
    Kwok, R.
    Layton, C.
    Melling, H.
    Perovich, D.
    Persson, O.
    Ruddick, B.
    Timmermans, M. -L.
    Toole, J.
    Ross, T.
    Vavrus, S.
    Winsor, P.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (12) : 2079 - 2105
  • [7] Variability of Arctic sea-ice topography and its impact on the atmospheric surface drag
    Castellani, G.
    Luepkes, C.
    Hendricks, S.
    Gerdes, R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (10) : 6743 - 6762
  • [8] Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer
    Cole, Sylvia T.
    Toole, John M.
    Lele, Ratnaksha
    Timmermans, Mary-Louise
    Gallaher, Shawn G.
    Stanton, Timothy P.
    Shaw, William J.
    Hwang, Byongjun
    Maksym, Ted
    Wilkinson, Jeremy P.
    Ortiz, Macarena
    Graber, Hans
    Rainville, Luc
    Petty, Alek A.
    Farrell, Sinead L.
    Richter-Menge, Jackie A.
    Haas, Christian
    [J]. ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2017, 5
  • [9] Ekman Veering, Internal Waves, and Turbulence Observed under Arctic Sea Ice
    Cole, Sylvia T.
    Timmermans, Mary-Louise
    Toole, John M.
    Krishfield, Richard A.
    Thwaites, Fredrik T.
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2014, 44 (05) : 1306 - 1328
  • [10] Coon M. D., 1980, Sea Ice Processes and Models. Proceedings of the Arctic Ice Dynamics Joint Experiment International Commission on Snow and Ice Symposium, P12