Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice

被引:84
作者
Gulevich, D. R. [1 ,2 ]
Yudin, D. [1 ,3 ]
Skryabin, D. V. [1 ,2 ]
Iorsh, I. V. [1 ,3 ]
Shelykh, I. A. [1 ,4 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
关键词
PARAMETRIC SCATTERING; PHASE;
D O I
10.1038/s41598-017-01646-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Matter in nontrivial topological phase possesses unique properties, such as support of unidirectional edge modes on its interface. It is the existence of such modes which is responsible for the wonderful properties of a topological insulator - material which is insulating in the bulk but conducting on its surface, along with many of its recently proposed photonic and polaritonic analogues. We show that exciton-polariton fluid in a nontrivial topological phase in kagome lattice, supports nonlinear excitations in the form of solitons built up from wavepackets of topological edge modes - topological edge solitons. Our theoretical and numerical results indicate the appearance of bright, dark and grey solitons dwelling in the vicinity of the boundary of a lattice strip. In a parabolic region of the dispersion the solitons can be described by envelope functions satisfying the nonlinear Schrodinger equation. Upon collision, multiple topological edge solitons emerge undistorted, which proves them to be true solitons as opposed to solitary waves for which such requirement is waived. Importantly, kagome lattice supports topological edge mode with zero group velocity unlike other types of truncated lattices. This gives a finer control over soliton velocity which can take both positive and negative values depending on the choice of forming it topological edge modes.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons [J].
Abbarchi, M. ;
Amo, A. ;
Sala, V. G. ;
Solnyshkov, D. D. ;
Flayac, H. ;
Ferrier, L. ;
Sagnes, I. ;
Galopin, E. ;
Lemaitre, A. ;
Malpuech, G. ;
Bloch, J. .
NATURE PHYSICS, 2013, 9 (05) :275-279
[2]  
Ablowitz M J., 2011, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
[3]   Linear and nonlinear traveling edge waves in optical honeycomb lattices [J].
Ablowitz, Mark J. ;
Curtis, Christopher W. ;
Ma, Yi-Ping .
PHYSICAL REVIEW A, 2014, 90 (02)
[4]   Bosonic Condensation and Disorder-Induced Localization in a Flat Band [J].
Baboux, F. ;
Ge, L. ;
Jacqmin, T. ;
Biondi, M. ;
Galopin, E. ;
Lemaitre, A. ;
Le Gratiet, L. ;
Sagnes, I. ;
Schmidt, S. ;
Tuereci, H. E. ;
Amo, A. ;
Bloch, J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[5]   Chiral Bogoliubov excitations in nonlinear bosonic systems [J].
Bardyn, Charles-Edouard ;
Karzig, Torsten ;
Refael, Gil ;
Liew, Timothy C. H. .
PHYSICAL REVIEW B, 2016, 93 (02)
[6]   Topological polaritons and excitons in garden-variety systems [J].
Bardyn, Charles-Edouard ;
Karzig, Torsten ;
Refael, Gil ;
Liew, Timothy C. H. .
PHYSICAL REVIEW B, 2015, 91 (16)
[7]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[8]   Interacting quantum fluid in a polariton Chern insulator [J].
Bleu, O. ;
Solnyshkov, D. D. ;
Malpuech, G. .
PHYSICAL REVIEW B, 2016, 93 (08)
[9]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[10]   Exciton-Polariton Gap Solitons in Two-Dimensional Lattices [J].
Cerda-Mendez, E. A. ;
Sarkar, D. ;
Krizhanovskii, D. N. ;
Gavrilov, S. S. ;
Biermann, K. ;
Skolnick, M. S. ;
Santos, P. V. .
PHYSICAL REVIEW LETTERS, 2013, 111 (14)