Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors

被引:75
作者
Oelker, Eric [1 ]
Isogai, Tomoki [1 ]
Miller, John [1 ]
Tse, Maggie [1 ]
Barsotti, Lisa [1 ]
Mavalvala, Nergis [1 ]
Evans, Matthew [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LIGHT SOURCE; NOISE; VACUUM; NM;
D O I
10.1103/PhysRevLett.116.041102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90 degrees around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.
引用
收藏
页数:6
相关论文
共 39 条
  • [1] Advanced LIGO
    Aasi, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Alemic, A.
    Allen, B.
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J. S.
    Ashton, G.
    Ast, S.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barbet, M.
    Barclay, S.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
  • [2] Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/nphoton.2013.177, 10.1038/NPHOTON.2013.177]
  • [3] Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
  • [4] Gravitational radiation detection with laser interferometry
    Adhikari, Rana X.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (01) : 121 - 151
  • [5] Interferometer design of the KAGRA gravitational wave detector
    Aso, Yoichi
    Michimura, Yuta
    Somiya, Kentaro
    Ando, Masaki
    Miyakawa, Osamu
    Sekiguchi, Takanori
    Tatsumi, Daisuke
    Yamamoto, Hiroaki
    [J]. PHYSICAL REVIEW D, 2013, 88 (04):
  • [6] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [7] Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors
    Buonanno, A
    Chen, YB
    [J]. PHYSICAL REVIEW D, 2001, 64 (04):
  • [8] QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1981, 23 (08): : 1693 - 1708
  • [9] Experimental characterization of frequency-dependent squeezed light
    Chelkowski, S
    Vahlbruch, H
    Hage, B
    Franzen, A
    Lastzka, N
    Danzmann, K
    Schnabel, R
    [J]. PHYSICAL REVIEW A, 2005, 71 (01):
  • [10] Coherent control of broadband vacuum squeezing
    Chelkowski, Simon
    Vahlbruch, Henning
    Danzmann, Karsten
    Schnabel, Roman
    [J]. PHYSICAL REVIEW A, 2007, 75 (04):