Talbot-Lau X-Ray Density Diagnostic for High Energy Density Plasmas

被引:0
|
作者
Valdivia, M. P. [1 ]
Stutman, D. [1 ]
Finkenthal, M. [1 ]
Regan, S. P. [2 ]
Stoeckl, C. [2 ]
Mileham, C. [2 ]
Begishev, I. [2 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
来源
2015 IEEE 26TH SYMPOSIUM ON FUSION ENGINEERING (SOFE) | 2015年
关键词
X-ray imaging; Refraction diagnostics; HED diagnostic; Phase-shift; PHASE RETRIEVAL; AMPLIFIER;
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Phase-contrast x-ray diagnostics can detect density gradients in low-Z matter with the sensitivity and spatial resolution required in High Energy Density (HED) plasma experiments. Talbot-Lau interferometry measures x-ray beam deviations due to refraction index gradients in its path. It can simultaneously provide x-ray attenuation, refraction, elemental composition, and scatter images of a low-Z object. We have developed the Talbot-Lau Moire X-ray Deflectometry (TXD) single image technique based on phase-retrieval. The results obtained at 8 and 17 keV with high magnification using low-Z test objects suggest a clear advantage of TXD as HED electron density diagnostic over conventional radiography. The Moire technique can detect sharp and smooth density gradients with source-limited spatial resolution. Also, TXD can use extended, incoherent, line or continuum x-ray sources, allowing for a wide range of backlighters.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Proof-of-concept Talbot-Lau x-ray interferometry with a high-intensity, high-repetition-rate, laser-driven K-alpha source
    Bouffetier, V
    Ceurvorst, L.
    Valdivia, M. P.
    Dorchies, F.
    Hulin, S.
    Goudal, T.
    Stutman, D.
    Casner, A.
    APPLIED OPTICS, 2020, 59 (27) : 8380 - 8387
  • [22] Cascade Talbot Lau interferometers for x-ray differential phase-contrast imaging
    Lei, Yaohu
    Liu, Xin
    Huang, Jianheng
    Du, Yang
    Guo, Jinchuan
    Zhao, Zhigang
    Li, Ji
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (38)
  • [23] Imaging scattered x-ray radiation for measurement of local electron density in high-energy-density experiments
    Huntington, C. M.
    Krauland, C. M.
    Kuranz, C. C.
    Glenzer, S. H.
    Drake, R. P.
    HIGH ENERGY DENSITY PHYSICS, 2010, 6 (02) : 194 - 199
  • [24] Experimental research on the feature of an x-ray Talbot–Lau interferometer versus tube accelerating voltage
    王圣浩
    Margie P.Olbinado
    Atsushi Momose
    韩华杰
    胡仁芳
    王志立
    高昆
    张凯
    朱佩平
    吴自玉
    Chinese Physics B, 2015, 24 (06) : 677 - 682
  • [25] X-ray Talbot interferometry with capillary plates
    Momose, A
    Kawamoto, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (1A): : 314 - 316
  • [26] Evaluation of high packing density powder X-ray screens by Monte Carlo methods
    Liaparinos, P.
    Kandarakis, I.
    Cavouras, D.
    Kalivas, N.
    Delis, H.
    Panayiotakis, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 580 (01) : 427 - 429
  • [27] A method to determine the density of foods using X-ray imaging
    Kelkar, Shivangi
    Boushey, Carol J.
    Okos, Martin
    JOURNAL OF FOOD ENGINEERING, 2015, 159 : 36 - 41
  • [28] Evaluation of electrical crosstalk in high-density photodiode arrays for X-ray imaging applications
    Ji, Fan
    Juntunen, Mikko
    Hietanen, Iiro
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 610 (01) : 28 - 30
  • [29] A Novel Stationary CT Scheme Based on High-Density X-Ray Sources Device
    Duan, Yiting
    Cheng, Haitao
    Wang, Kai
    Mou, Xuanqin
    IEEE ACCESS, 2020, 8 : 112910 - 112921
  • [30] High-resolution x-ray imaging of extended lasing plasmas
    Forster, E
    Hutcheon, RJ
    Renner, O
    Uschmann, I
    Vollbrecht, M
    Nantel, M
    Klisnick, A
    Jaegle, P
    APPLIED OPTICS, 1997, 36 (04): : 831 - 840