Getting across -: bacterial type III effector proteins on their way to the plant cell

被引:182
作者
Büttner, D [1 ]
Bonas, U [1 ]
机构
[1] Univ Halle Wittenberg, Inst Genet, D-06099 Halle An Der Saale, Saale, Germany
关键词
AvrBs3; hrp genes; pathogenicity island; PIP box; secretion;
D O I
10.1093/emboj/cdf536
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pathogenicity of most Gram-negative bacterial plant pathogens depends on hrp (hypersensitive response and pathogenicity) genes, which control the ability to cause disease and to elicit specific defense responses in resistant plants. hrp genes encode a specialized type III secretion (TTS) system that mediates the vectorial delivery of bacterial effector proteins across both bacterial membranes as well as across the eukaryotic plasma membrane into the host cell cytosol. One well-studied effector protein is AvrBs3 from Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot in pepper and tomato. AvrBs3 induces hypertrophy symptoms in susceptible plants and triggers a resistance gene-specific cell death reaction in resistant plants. Intriguingly, AvrBs3 has characteristic features of eukaryotic transcription factors, suggesting that it modulates the host's transcriptome. Here, we discuss the TTS system of X.campestris pv. vesicatoria in the light of current knowledge on type III-dependent protein secretion in plant pathogenic bacteria.
引用
收藏
页码:5313 / 5322
页数:10
相关论文
共 111 条
[1]   Bacterial flagella and type III secretion systems [J].
Aizawa, S .
FEMS MICROBIOLOGY LETTERS, 2001, 202 (02) :157-164
[2]   A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes [J].
Aldon, D ;
Brito, B ;
Boucher, C ;
Genin, S .
EMBO JOURNAL, 2000, 19 (10) :2304-2314
[3]   The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants [J].
Alfano, JR ;
Charkowski, AO ;
Deng, WL ;
Badel, JL ;
Petnicki-Ocwieja, T ;
van Dijk, K ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4856-4861
[4]   Analysis of the role of the Pseudomonas syringae pv syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations [J].
Alfano, JR ;
Bauer, DW ;
Milos, TM ;
Collmer, A .
MOLECULAR MICROBIOLOGY, 1996, 19 (04) :715-728
[5]  
Alfano JR, 1996, PLANT CELL, V8, P1683, DOI 10.1105/tpc.8.10.1683
[6]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[7]   A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [J].
Anderson, DM ;
Schneewind, O .
SCIENCE, 1997, 278 (5340) :1140-1143
[8]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[9]   XANTHOMONAS-CAMPESTRIS CONTAINS A CLUSTER OF HRP GENES RELATED TO THE LARGER HRP CLUSTER OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
GOUGH, CL ;
BARBER, CE ;
BOUCHER, C ;
DANIELS, MJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1991, 4 (06) :593-601
[10]   Xv4-vrxv4:: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii [J].
Astua-Monge, G ;
Minsavage, GV ;
Stall, RE ;
Vallejos, CE ;
Davis, MJ ;
Jones, JB .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1346-1355