Sustainable eco-friendly bricks from slate tailings through geopolymerization: synthesis and characterization analysis

被引:49
作者
Kang, Xin [1 ,2 ,3 ]
Gan, Yuxiang [3 ]
Chen, Renpeng [1 ,2 ,3 ]
Zhang, Chao [1 ,2 ,3 ]
机构
[1] Hunan Univ, Key Lab Bldg Safety & Energy Efficiency, Minist Educ, Changsha 410082, Peoples R China
[2] Hunan Univ, Natl Ctr Int Res Collaborat Bldg Safety & Environ, Changsha 410082, Peoples R China
[3] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Slate tailings; Eco-friendly geopolymer brick; Compressive strength; Microstructure; Atomic force microscopy;
D O I
10.1016/j.conbuildmat.2021.122337
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With the objective of decreasing the adverse impact on the environment and recycling the waste of tailings, the possibility of producing eco-friendly building materials by utilizing the slate tailings (ST) was investigated. Besides ST, the fly ash (FA) and metakaolin (MK) mixtures were added to the raw materials through geopolymerization to improve the brick quality. The mechanical performance of the geopolymer brick was characterized by unconfined compression tests, and the physical properties, microstructure and geopolymerization processes were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that at different ST contents, the variations of the compressive strength are attributed to the coupling effects of pore filling and geopolymer gelation. Higher alkaline activator/solid ratio and extended curing time generally lead to higher strength and bulk density while reduce the water absorption rate. Atomic force microscopy (AFM) was utilized to offer detailed information of geopolymer gels at higher resolutions for obtaining both surface morphology and nano-mechanical properties. The optimum conditions are found to be that the ST is 50%, alkali content and forming days are respectively 14% and 28 days. Under these conditions, the compressive strength and water absorption of the brick samples are 20.47 MPa and 13.4%, respectively, and the other physical properties meet the Chinese Non-sintered Waste Tailing Brick Standard (JC/T 422-2007). (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks [J].
Ahmari, Saeed ;
Zhang, Lianyang .
CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 :1002-1011
[2]   Production of eco-friendly bricks from copper mine tailings through geopolymerization [J].
Ahmari, Saeed ;
Zhang, Lianyang .
CONSTRUCTION AND BUILDING MATERIALS, 2012, 29 :323-331
[3]   Sustainable concrete: Building a greener future [J].
Assi, Lateef ;
Carter, Kealy ;
Deaver, Edward ;
Anay, Rafal ;
Ziehl, Paul .
JOURNAL OF CLEANER PRODUCTION, 2018, 198 :1641-1651
[4]  
Cerny R, 2015, WOOD PUBL SER CIVIL, V55, P63, DOI 10.1016/B978-1-78242-305-8.00004-8
[5]   Preparation of eco-friendly construction bricks from hematite tailings [J].
Chen, Yongliang ;
Zhang, Yimin ;
Chen, Tiejun ;
Zhao, Yunliang ;
Bao, Shenxu .
CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (04) :2107-2111
[6]   GEOPOLYMERS AND GEOPOLYMERIC MATERIALS [J].
DAVIDOVITS, J .
JOURNAL OF THERMAL ANALYSIS, 1989, 35 (02) :429-441
[7]   GEOPOLYMERS - INORGANIC POLYMERIC NEW MATERIALS [J].
DAVIDOVITS, J .
JOURNAL OF THERMAL ANALYSIS, 1991, 37 (08) :1633-1656
[8]   Kinetics of geopolymerization:: Role of Al2O3 and SiO2 [J].
De Silva, P. ;
Sagoe-Crenstil, K. ;
Sirivivatnanon, V. .
CEMENT AND CONCRETE RESEARCH, 2007, 37 (04) :512-518
[9]   Geopolymer technology:: the current state of the art [J].
Duxson, P. ;
Fernandez-Jimenez, A. ;
Provis, J. L. ;
Lukey, G. C. ;
Palomo, A. ;
van Deventer, J. S. J. .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (09) :2917-2933
[10]   Understanding the relationship between geopolymer composition, microstructure and mechanical properties [J].
Duxson, P ;
Provis, JL ;
Lukey, GC ;
Mallicoat, SW ;
Kriven, WM ;
van Deventer, JSJ .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 269 (1-3) :47-58