Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cells

被引:36
作者
Huang, Wenchao [1 ,2 ,3 ]
Gann, Eliot [1 ,4 ]
Chandrasekaran, Naresh [1 ,5 ,6 ]
Prasad, Shyamal K. K. [7 ]
Chang, Sheng-Yung [3 ]
Thomsen, Lars [4 ]
Kabra, Dinesh [5 ]
Hodgkiss, Justin M. [7 ]
Cheng, Yi-Bing [1 ]
Yang, Yang [2 ,3 ]
McNeill, Christopher R. [1 ]
机构
[1] Monash Univ, Dept Mat Sci & Engn, Wellington Rd, Clayton, Vic 3800, Australia
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[5] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[6] Indian Inst Technol, IITB Monash Res Acad, Bombay 400076, Maharashtra, India
[7] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6012, New Zealand
基金
澳大利亚研究理事会;
关键词
INDENE-C-60; BISADDUCT; HIGH-EFFICIENCY; MORPHOLOGY; DEPENDENCE; MISCIBILITY; BLENDS; DONOR;
D O I
10.1002/aenm.201602197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The morphology, photophysics, and device performance of solar cells based on the low bandgap polymer poly[[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl (PBDTTT-EFT) (also known as PTB7-Th) blended with different fullerene acceptors: Phenyl-C-61-butyric acid methyl ester (PC61BM), phenyl-C-71-butyric acid methyl ester (PC71BM), or indene-C-60 bisadduct (ICBA) are correlated. Compared to PC71BM-based cells-which achieve a power conversion efficiency (PCE) of 9.4%-cells using ICBA achieve a higher open-circuit voltage (V-OC) of 1.0 V albeit with a lower PCE of 7.1%. To understand the origin of this lower PCE, the morphology and photophysics have been thoroughly characterized. Hard and soft X-ray scattering measurements reveal that the PBDTTT-EFT: ICBA blend has a lower crystallinity, lower domain purity, and smaller domain size compared to the PBDTTT-EFT: PC71BM blend. Incomplete photoluminescence quenching is also found in the ICBA blend with transient absorption measurements showing faster recombination dynamics at short timescales. Transient photovoltage measurements highlight further differences in recombination at longer timeframes due to the more intermixed morphology of the ICBA blend. Interestingly, a mild thermal treatment improves the performance of PBDTTT-EFT: ICBA cells which is exploited in the fabrication of a homo PBDTTT-EFT: ICBA tandem solar cell with PCE of 9.0% and V-OC of 1.93 V.
引用
收藏
页数:10
相关论文
共 46 条
[31]   Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell [J].
Maurano, Andrea ;
Shuttle, Chris C. ;
Hamilton, Rick ;
Ballantyne, Amy M. ;
Nelson, Jenny ;
Zhang, Weimin ;
Heeney, Martin ;
Durrant, James R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5947-5957
[32]   Morphology of all-polymer solar cells [J].
McNeill, Christopher R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5653-5667
[33]   Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale [J].
Rivnay, Jonathan ;
Mannsfeld, Stefan C. B. ;
Miller, Chad E. ;
Salleo, Alberto ;
Toney, Michael F. .
CHEMICAL REVIEWS, 2012, 112 (10) :5488-5519
[34]   Charge Photogeneration for a Series of Thiazolo-Thiazole Donor Polymers Blended with the Fullerene Electron Acceptors PCBM and ICBA [J].
Shoaee, Safa ;
Subramaniyan, Selvam ;
Xin, Hao ;
Keiderling, Chaz ;
Tuladhar, Pabitra Shakya ;
Jamieson, Fiona ;
Jenekhe, Samson A. ;
Durrant, James R. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (26) :3286-3298
[35]   Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell [J].
Shuttle, C. G. ;
O'Regan, B. ;
Ballantyne, A. M. ;
Nelson, J. ;
Bradley, D. D. C. ;
de Mello, J. ;
Durrant, J. R. .
APPLIED PHYSICS LETTERS, 2008, 92 (09)
[36]   Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend [J].
Shuttle, Christopher G. ;
Hamilton, Richard ;
Nelson, Jenny ;
O'Regan, Brian C. ;
Durrant, James R. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) :698-702
[37]   Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells [J].
Treat, Neil D. ;
Varotto, Alessandro ;
Takacs, Christopher J. ;
Batara, Nicolas ;
Al-Hashimi, Mohammed ;
Heeney, Martin J. ;
Heeger, Alan J. ;
Wudl, Fred ;
Hawker, Craig J. ;
Chabinyc, Michael L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (38) :15869-15879
[38]   The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices [J].
Ulum, Syahrul ;
Holmes, Natalie ;
Barr, Matthew ;
Kilcoyne, A. L. David ;
Bin Gong, Bill ;
Zhou, Xiaojing ;
Belcher, Warwick ;
Dastoor, Paul .
NANO ENERGY, 2013, 2 (05) :897-905
[39]   Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends [J].
Veldman, Dirk ;
Ipek, Oezlem ;
Meskers, Stefan C. J. ;
Sweelssen, Joergen ;
Koetse, Marc M. ;
Veenstra, Sjoerd C. ;
Kroon, Jan M. ;
van Bavel, Svetlana S. ;
Loos, Joachim ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (24) :7721-7735
[40]   Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology [J].
Watkins, PK ;
Walker, AB ;
Verschoor, GLB .
NANO LETTERS, 2005, 5 (09) :1814-1818