Porous biodegradable blends of poly(L-lactic poly(ε-caprolactone):: polyester acid) and physical properties, morphology, and biodegradation

被引:35
作者
Tsuji, Hideto [1 ]
Horikawa, Gen [1 ]
机构
[1] Toyohashi Univ Technol, Dept Ecol Engn, Fac Engn, Toyohashi, Aichi 4418580, Japan
关键词
poly(L-lactic acid); poly (epsilon-caprolactone); poly(ethylene glycol); porous polymer blends; physical properties; enzymatic degradation;
D O I
10.1002/pi.2150
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(L-lactic acid) (PLLA), poly(epsilon-caprolactone) (PCL), and their films without or blended with 50 wt% poly(ethylene glycol) (PEG) were prepared by solution casting. Porous films were obtained by water-extraction of PEG from solution-cast phase-separated PLLA-blend-PCL-blend-PEG films. The effects of PLLA/PCL ratio on the morphology of the porous films and the effects of PLLA/PCL ratio and pores on the physical properties and biodegradability of the films were investigated. The pore size of the blend films decreased with increasing PLLA/PCL ratio. Polymer blending and pore formation gave biodegradable PLLA-blend-PCL materials with a wide variety of tensile properties with Young's modulus in the range of 0.07-1.4 GPa and elongation at break in the range 3-380%. Pore formation markedly increased the PLLA crystallinity of porous films, except for low PLLA/PCL ratio. Polymer blending as well as pore formation enhanced the enzymatic degradation of biodegradable polyester blends. (c) 2006 Society of Chemical Industry.
引用
收藏
页码:258 / 266
页数:9
相关论文
共 50 条
  • [1] Ternary blends from biodegradable poly(L-lactic acid), poly(ε-caprolactone) and poly(vinyl acetate) with balanced properties
    Cheng, Hongda
    Li, Yi
    Zhang, Ye
    Yu, Yancun
    Yu, Mengdie
    Han, Changyu
    Shi, Hechang
    JOURNAL OF POLYMER RESEARCH, 2023, 30 (05)
  • [2] Enzymatic degradation of biodegradable polyester composites of Poly(L-lactic acid) and poly(ε-caprolactone)
    Tsuji, Hideto
    Kidokoro, Yuki
    Mochizuki, Masatusgu
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (10) : 1245 - 1254
  • [3] Ternary blends from biodegradable poly(L-lactic acid), poly(ε-caprolactone) and poly(vinyl acetate) with balanced properties
    Hongda Cheng
    Yi Li
    Ye Zhang
    Yancun Yu
    Mengdie Yu
    Changyu Han
    Hechang Shi
    Journal of Polymer Research, 2023, 30
  • [4] The preparation and biodegradable properties of poly(L-lactic acid)-poly(ε-caprolactone) multiblock copolymers
    Teng, Cuiqing
    Xu, Hong
    Yang, Kai
    Yu, Muhuo
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2006, 43 (11): : 1877 - 1886
  • [5] Morphology and Thermal Properties of Hybrid Nanofibrous Scaffold of Poly(L-lactic acid) and Poly(ε-caprolactone)
    Cao Li-jun
    Feng Wei
    Zhang Le-qiang
    Hu Jin-wei
    Cheng Xiao
    Qiu Ke-xin
    He Chuang-long
    2011 INTERNATIONAL FORUM ON BIOMEDICAL TEXTILE MATERIALS, PROCEEDINGS, 2011, : 219 - 223
  • [6] Thermo-mechanical properties of poly ε-caprolactone/poly L-lactic acid blends: Addition of nalidixic acid and polyethylene glycol additives
    Douglas, P.
    Albadarin, Ahmad B.
    Al-Muhtaseb, Ala'a H.
    Mangwandi, Chirangano
    Walkera, G. M.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 45 : 154 - 165
  • [7] Poly(l-Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends
    Di Lorenzo, Maria Laura
    POLYMER REVIEWS, 2021, 61 (03) : 457 - 492
  • [8] Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin
    Li, JC
    He, Y
    Inoue, Y
    POLYMER INTERNATIONAL, 2003, 52 (06) : 949 - 955
  • [9] Crystalline, Thermal, and Biodegradable Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)/POSS Melt Blends
    Xu, Huijun
    Tang, Songchao
    Chen, Jianding
    Chen, Nan
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2016, 55 (10) : 1000 - 1011
  • [10] Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(D,L-lactic acid) blends
    Dong, Weifu
    Ma, Piming
    Wang, Shifeng
    Chen, Mingqing
    Cai, Xiaoxia
    Zhang, Yong
    POLYMER DEGRADATION AND STABILITY, 2013, 98 (09) : 1549 - 1555