Efficient Information-Theoretic Secure Multiparty Computation over Z/pkZ via Galois Rings

被引:26
作者
Abspoel, Mark [1 ,2 ]
Cramer, Ronald [1 ,3 ]
Damgard, Ivan [4 ]
Escudero, Daniel [4 ]
Yuan, Chen [1 ]
机构
[1] Ctr Wiskunde & Informat CWI, Amsterdam, Netherlands
[2] Philips Res, Eindhoven, Netherlands
[3] Leiden Univ, Math Inst, Leiden, Netherlands
[4] Aarhus Univ, Aarhus, Denmark
来源
THEORY OF CRYPTOGRAPHY, TCC 2019, PT I | 2019年 / 11891卷
基金
欧洲研究理事会;
关键词
D O I
10.1007/978-3-030-36030-6_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
At CRYPTO 2018, Cramer et al. introduced a secret-sharing based protocol called SPDZ(2k) that allows for secure multiparty computation (MPC) in the dishonest majority setting over the ring of integers modulo 2(k), thus solving a long-standing open question in MPC about secure computation over rings in this setting. In this paper we study this problem in the information-theoretic scenario. More specifically, we ask the following question: Can we obtain information-theoretic MPC protocols that work over rings with comparable efficiency to corresponding protocols over fields? We answer this question in the affirmative by presenting an efficient protocol for robust Secure Multiparty Computation over Z/p(k)Z (for any prime p and positive integer k) that is perfectly secure against active adversaries corrupting a fraction of at most 1/3 players, and a robust protocol that is statistically secure against an active adversary corrupting a fraction of at most 1/2 players.
引用
收藏
页码:471 / 501
页数:31
相关论文
共 16 条
  • [1] Generalizing the SPDZ Compiler For Other Protocols
    Araki, Toshinori
    Barak, Assi
    Furukawa, Jun
    Keller, Marcel
    Lindell, Yehuda
    Ohara, Kazuma
    Tsuchida, Hikaru
    [J]. PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 880 - 895
  • [2] Barak A., 2019, 2019131 CRYPT EPRINT
  • [3] Beerliová-Trubíniová Z, 2008, LECT NOTES COMPUT SC, V4948, P213, DOI 10.1007/978-3-540-78524-8_13
  • [4] Beerliová-Trubíniová Z, 2006, LECT NOTES COMPUT SC, V3876, P305
  • [5] Ben-Sasson E, 2012, LECT NOTES COMPUT SC, V7417, P663
  • [6] ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS
    CANTOR, DG
    KALTOFEN, E
    [J]. ACTA INFORMATICA, 1991, 28 (07) : 693 - 701
  • [7] Amortized Complexity of Information-Theoretically Secure MPC Revisited
    Cascudo, Ignacio
    Cramer, Ronald
    Xing, Chaoping
    Yuan, Chen
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2018, PT III, 2018, 10993 : 395 - 426
  • [8] Cramer R, 2003, LECT NOTES COMPUT SC, V2656, P596
  • [9] Cramer R., 2015, SECURE MULTIPARTY CO
  • [10] Cramer R., 2019, 2019832 IACR CRYPT E