Secondary bifurcation for a nonlocal Allen-Cahn equation

被引:8
|
作者
Kuto, Kousuke [1 ]
Mori, Tatsuki [2 ]
Tsujikawa, Tohru [3 ]
Yotsutani, Shoji [4 ]
机构
[1] Univ Electrocommun, Dept Commun Engn & Informat, Chofu, Tokyo 1828585, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[3] Univ Miyazaki, Fac Engn, Miyazaki 8892192, Japan
[4] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词
Allen-Cahn equation; Nonlocal term; Bifurcation; Symmetry breaking; Complete elliptic integrals; CELL POLARIZATION; DIFFUSION; MODEL; EIGENVALUES;
D O I
10.1016/j.jde.2017.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Neumann problem of a nonlocal Allen-Cahn equation in an interval. A main result finds a symmetry breaking (secondary) bifurcation point on the bifurcation curve of solutions with odd-symmetry. Our proof is based on a level set analysis for the associated integral map. A method using the complete elliptic integrals proves the uniqueness of secondary bifurcation point. We also show some numerical simulations concerning the global bifurcation structure. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2687 / 2714
页数:28
相关论文
共 50 条
  • [1] Bifurcation of solutions to the Allen-Cahn equation
    Smith, Graham
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 667 - 687
  • [2] REPRESENTATION FORMULAS OF SOLUTIONS AND BIFURCATION SHEETS TO A NONLOCAL ALLEN-CAHN EQUATION
    Mori, Tatsuki
    Kuto, Kousuke
    Tsujikawa, Tohru
    Yotsutani, Shoji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) : 4907 - 4925
  • [3] NUMERICAL ANALYSIS FOR A NONLOCAL ALLEN-CAHN EQUATION
    Bates, Peter W.
    Brown, Sarah
    Han, Jianlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (01) : 33 - 49
  • [4] An Explicit Hybrid Method for the Nonlocal Allen-Cahn Equation
    Lee, Chaeyoung
    Yoon, Sungha
    Park, Jintae
    Kim, Junseok
    SYMMETRY-BASEL, 2020, 12 (08):
  • [5] Global solution branches for a nonlocal Allen-Cahn equation
    Kuto, Kousuke
    Mori, Tatsuki
    Tsujikawa, Tohru
    Yotsutani, Shoji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (09) : 5928 - 5949
  • [6] Stability for stationary solutions of a nonlocal Allen-Cahn equation
    Miyamoto, Yasuhito
    Mori, Tatsuki
    Tsujikawa, Tohru
    Yotsutani, Shoji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 581 - 597
  • [7] Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term
    Chen, XF
    Hilhorst, D
    Logak, E
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (07) : 1283 - 1298
  • [8] Slow motion for the nonlocal Allen-Cahn equation in n dimensions
    Murray, Ryan
    Rinaldi, Matteo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [9] A generalization of the Allen-Cahn equation
    Miranville, Alain
    Quintanilla, Ramon
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (02) : 410 - 430
  • [10] Generation, motion and thickness of transition layers for a nonlocal Allen-Cahn equation
    Alfaro, Matthieu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3324 - 3336