A Lie algebraic approach to Novikov algebras

被引:17
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Nankai Inst Math, Dept Math, Tianjin 300071, Peoples R China
[3] Liu Hui Ctr Appl Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Novikov algebras; Novikov interior derivation algebras; linear deformation;
D O I
10.1016/S0393-0440(02)00150-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Novikov algebras were introduced in connection with Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra. Thus it is useful to relate the study of Novikov algebras to the theory of Lie algebras. In this paper, we will try to realize Novikov algebras through a Lie algebraic approach. Such a realization could be important in physics and geometry. We find that all transitive Novikov algebras in dimension less than or equal to3 can be realized as the Novikov algebras obtained through Lie algebras and their compatible linear (global) deformations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:218 / 230
页数:13
相关论文
共 27 条
[1]   The structures of bi-symmetric algebras and their sub-adjacent Lie algebras [J].
Bai, CM ;
Meng, DJ .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2717-2734
[2]   Transitive Novikov algebras on four-dimensional nilpotent Lie algebras [J].
Bai, CM ;
Meng, DJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (10) :1761-1768
[3]   The classification of Novikov algebras in low dimensions: invariant bilinear forms (vol 34, pg 1581, 2001) [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (39) :8193-8197
[4]   The realization of non-transitive Novikov algebras [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (33) :6435-6442
[5]   On the realization of transitive Novikov algebras [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16) :3363-3372
[6]   The classification of Novikov algebras in low dimensions [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08) :1581-1594
[7]  
BAI CM, IN PRESS J GEOM PHYS
[8]  
BAI CM, DERIVATIONS NOVIKOV
[9]  
Balinsky A.A., 1985, SOV MATH DOKL, V32, P228
[10]   Simple left-symmetric algebras with solvable Lie algebra [J].
Burde D. .
manuscripta mathematica, 1998, 95 (3) :397-411