AN EFFECTIVE SCHMIDT'S SUBSPACE THEOREM FOR HYPERSURFACES IN SUBGENERAL POSITION IN PROJECTIVE VARIETIES OVER FUNCTION FIELDS

被引:2
作者
Le, Giang [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
关键词
Schmidt's subspace theorem; Function fields; Diophantine approximation;
D O I
10.2996/kmj/1521424823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We established an effective version of Schmidt's subspace theorem on a smooth projective variety X over function fields of characteristic zero for hypersurfaces located in m-subgeneral position with respect to X.
引用
收藏
页码:52 / 69
页数:18
相关论文
共 11 条
[1]   An effective Schmidt's subspace theorem for non-linear forms over function fields [J].
An, Ta Thi Hoai ;
Wang, Julie Tzu-Yueh .
JOURNAL OF NUMBER THEORY, 2007, 125 (01) :210-228
[2]  
BROWNAWELL WD, 1989, LECT NOTES MATH, V1380, P1
[3]  
Catanese Fabrizio, 1992, Journal of Algebraic Geometry, V1, P561
[4]   The degenerated second main theorem and Schmidt's subspace theorem [J].
Chen ZhiHua ;
Ru Min ;
Yan QiMing .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1367-1380
[5]   On the effective Nullstellensatz [J].
Jelonek, Z .
INVENTIONES MATHEMATICAE, 2005, 162 (01) :1-17
[6]  
Kollar Janos, 1988, Journal of the American Mathematical Society, V1, P963, DOI DOI 10.2307/1990996
[7]   ON THE SCHMIDT SUBSPACE THEOREM FOR ALGEBRAIC POINTS [J].
Levin, Aaron .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (15) :2841-2885
[8]  
Mumford David, 1977, MONOGRAPHIES ENSEIGN, V23, P39
[9]   An Effective Schmidt's Subspace Theorem for Projective Varieties Over Function Fields [J].
Ru, Min ;
Wang, Julie Tzu-Yueh .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (03) :651-684
[10]   An effective Roth's theorem for function fields [J].
Wang, JTY .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (03) :1225-1234