Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites

被引:57
作者
Hernandez, J. J. [1 ]
Garcia-Gutierrez, M. C. [1 ]
Nogales, A. [1 ]
Rueda, D. R. [1 ]
Kwiatkowska, M. [2 ]
Szymczyk, A. [2 ]
Roslaniec, Z. [2 ]
Concheso, A. [3 ]
Guinea, I. [3 ]
Ezquerra, T. A. [1 ]
机构
[1] CSIC, Inst Estructura Mat, Madrid 28806, Spain
[2] W Pomeranian Univ Technol, Inst Mat Sci & Engn, PL-70310 Szczecin, Poland
[3] Grp Antolin Ingn, E-09007 Burgos, Spain
关键词
Carbon nanotubes; Polymer nanocomposites; Electrical conductivity; Transparency; WALL CARBON NANOTUBES; LOW PERCOLATION-THRESHOLD; X-RAY-SCATTERING; ELECTRICAL-CONDUCTIVITY; POLY(BUTYLENE TEREPHTHALATE); EPOXY COMPOSITES; AC CONDUCTIVITY; POLY(ETHYLENE-TEREPHTHALATE); NETWORKS; FILMS;
D O I
10.1016/j.compscitech.2009.04.002
中图分类号
TB33 [复合材料];
学科分类号
摘要
Nanostructuring of polymers has opened up new perspectives for multi-functional materials. In this paper we report on the feasibility of preparing transparent and conducting polymer nanocomposites based on poly(ethylene terephthalate) (PET) and single wall carbon nanotubes (SWCNT) as additive. Polymer nanocomposites were prepared by two different methods, direct mixing in the melt (DM) and in situ polymerization (I-SP). Samples prepared by DM show a low percolation threshold for electric conductivity, phi(c) = 0.024 wt.% of SWCNT, and are more transparent to light than samples prepared by I-SP. Particularly, a DM composite with composition just above phi(c) exhibits a conductivity of similar to 10(-8) S/cm and about 70% of transmittance to visible light. Better electrical and optical properties of nanocomposites prepared by DM in relation to those prepared by I-SP can be explained by assuming that a certain level of aggregation of SWCNT favors the formation of electrical pathways and reduces the number of scatters of light, hence favoring the transmittance of the visible light through these materials. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1867 / 1872
页数:6
相关论文
共 34 条
[1]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[2]  
Bauhofer W., 2009, COMPOS SCI TECHNOL
[3]   Transport properties of PMMA-carbon nanotubes composites [J].
Benoit, JM ;
Corraze, B ;
Lefrant, S ;
Blau, WJ ;
Bernier, P ;
Chauvet, O .
SYNTHETIC METALS, 2001, 121 (1-3) :1215-1216
[4]   Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes [J].
Broza, G ;
Kwiatkowska, M ;
Roslaniec, Z ;
Schulte, K .
POLYMER, 2005, 46 (16) :5860-5867
[5]   Structure development in poly(ethylene terephthalate) quenched from the melt at high cooling rates:: X-ray scattering and microhardness study [J].
Calleja, FJB ;
Gutiérrez, MCG ;
Rueda, DR ;
Piccarolo, S .
POLYMER, 2000, 41 (11) :4143-4148
[6]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[7]   Broadband ac conductivity of conductor-polymer composites [J].
Connor, MT ;
Roy, S ;
Ezquerra, TA ;
Calleja, FJB .
PHYSICAL REVIEW B, 1998, 57 (04) :2286-2294
[8]  
Crawford GP, 2005, WILEY-SID SER DISPL, P1, DOI 10.1002/0470870508
[9]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[10]   Influence of shear on the templated crystallization of poly(butylene terephthalate)/single wall carbon nanotube nanocomposites [J].
Garcia-Gutierrez, M. C. ;
Hernandez, J. J. ;
Nogales, A. ;
Pantine, P. ;
Rueda, D. R. ;
Ezquerra, T. A. .
MACROMOLECULES, 2008, 41 (03) :844-851