Simulating Exciton Delocalization in Organic Solar Cells by a Modified Drift-Diffusion Model

被引:0
作者
Wang, Zi Shuai [1 ]
Choy, Wallace C. H. [1 ]
Sha, Wei E. I. [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
来源
2017 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM (EDAPS) | 2017年
基金
中国国家自然科学基金;
关键词
organic solar cells; drift-diffusion model; exciton delocalization; CHARGE SEPARATION; MECHANISM; STATES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to understand the device physics and optimize the power conversion efficiency of organic solar cells (OSCs), the theoretical modeling involving the advanced excitonic physics is highly important. In this work, a modified drift-diffusion model is established to describe the exciton delocalization mechanism in the charge-generation process of the OSCs. The carrier transport, recombination and collection are also incorporated to fully capture the electrical response. The increase of the exciton delocalization ratio is demonstrated to be important for reducing the energy loss in the exciton dissociation process; and consequently, improving the device efficiency especially for the short-circuit current.
引用
收藏
页数:3
相关论文
共 16 条
[1]   The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors [J].
Bakulin, Artem A. ;
Rao, Akshay ;
Pavelyev, Vlad G. ;
van Loosdrecht, Paul H. M. ;
Pshenichnikov, Maxim S. ;
Niedzialek, Dorota ;
Cornil, Jerome ;
Beljonne, David ;
Friend, Richard H. .
SCIENCE, 2012, 335 (6074) :1340-1344
[3]   Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes [J].
Gelinas, Simon ;
Rao, Akshay ;
Kumar, Abhishek ;
Smith, Samuel L. ;
Chin, Alex W. ;
Clark, Jenny ;
van der Poll, Tom S. ;
Bazan, Guillermo C. ;
Friend, Richard H. .
SCIENCE, 2014, 343 (6170) :512-516
[4]   Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J].
He, Zhicai ;
Zhong, Chengmei ;
Huang, Xun ;
Wong, Wai-Yeung ;
Wu, Hongbin ;
Chen, Liwei ;
Su, Shijian ;
Cao, Yong .
ADVANCED MATERIALS, 2011, 23 (40) :4636-+
[5]   25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation [J].
Heeger, Alan J. .
ADVANCED MATERIALS, 2014, 26 (01) :10-28
[6]   What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends [J].
Jakowetz, Andreas C. ;
Bohm, Marcus L. ;
Zhang, Jiangbin ;
Sadhanala, Aditya ;
Huettner, Sven ;
Bakulin, Artem A. ;
Rao, Akshay ;
Friend, Richard H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (36) :11672-11679
[7]   Photoinduced Charge Generation in a Molecular Bulk Heterojunction Material [J].
Kaake, Loren G. ;
Jasieniak, Jacek J. ;
Bakus, Ronald C., II ;
Welch, Gregory C. ;
Moses, Daniel ;
Bazan, Guillermo C. ;
Heeger, Alan J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (48) :19828-19838
[8]   Device model for the operation of polymer/fullerene bulk heterojunction solar cells [J].
Koster, LJA ;
Smits, ECP ;
Mihailetchi, VD ;
Blom, PWM .
PHYSICAL REVIEW B, 2005, 72 (08)
[9]   High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes [J].
Lu, Luyao ;
Chen, Wei ;
Xu, Tao ;
Yu, Luping .
NATURE COMMUNICATIONS, 2015, 6
[10]   Exciton diffusion in organic photovoltaic cells [J].
Menke, S. Matthew ;
Holmes, Russell J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :499-512