WEIGHTED LOCAL ESTIMATES FOR SINGULAR INTEGRAL OPERATORS

被引:0
作者
Poelhuis, Jonathan [1 ]
Torchinsky, Alberto [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
NORM INEQUALITIES; MAXIMAL FUNCTIONS; BOUNDEDNESS; SPACES; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A local median decomposition is used to prove that a weighted mean of a function is controlled locally by the weighted mean of its local sharp maximal function. Together with the estimate M-0,s(not equal) (Tf)(x) = <= c Mf(x) for Caldereon-Zygmund singular integral operators, this allows us to express the local weighted control of Tf by Mf. Similar estimates hold for T replaced by singular integrals with kernels satisfying Hormander-type conditions or integral operators with homogeneous kernels, and M replaced by an appropriate maximal function M-T. Using sharper bounds in the local median decomposition we prove two-weight, L-v(p) - L-w(q) estimates for the singular integral operators described above for 1 < p <= q < infinity and a range of q. The local nature of the estimates leads to results involving weighted generalized Orlicz-Campanato and Orlicz-Morrey spaces.
引用
收藏
页码:7957 / 7998
页数:42
相关论文
共 57 条
[21]  
Guliyev V.S., 2006, Khazar Journal of Mathematics, V2, P3
[22]   Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces [J].
Guliyev, Vagif S. ;
Aliyev, Seymur S. ;
Karaman, Turhan ;
Shukurov, Parviz S. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) :327-355
[23]   Boundedness of maximal singular integral operators on spaces of homogeneous type and its applications [J].
Hu, Guoen ;
Yang, Dachun ;
Yang, Dongyong .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (02) :323-349
[24]   WEIGHTED NORM INEQUALITIES FOR CONJUGATE FUNCTION AND HILBERT TRANSFORM [J].
HUNT, R ;
MUCKENHOUPT, B ;
WHEEDEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) :227-251
[25]   The sharp weighted bound for general Calderon-Zygmund operators [J].
Hytonen, Tuomas P. .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1473-1506
[26]   LOCAL SHARP MAXIMAL FUNCTIONS [J].
JAWERTH, B ;
TORCHINSKY, A .
JOURNAL OF APPROXIMATION THEORY, 1985, 43 (03) :231-270
[27]   INTEGRAL-INEQUALITIES WITH WEIGHTS FOR THE HARDY MAXIMAL-FUNCTION [J].
KERMAN, RA ;
TORCHINSKY, A .
STUDIA MATHEMATICA, 1982, 71 (03) :277-284
[28]  
Koenig K.D., 2002, American Journal of Mathematics, V124, P129
[29]   RESULTS ON WEIGHTED NORM INEQUALITIES FOR MULTIPLIERS [J].
KURTZ, DS ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 255 (NOV) :343-362
[30]   Sharp A2 inequality for Haar shift operators [J].
Lacey, Michael T. ;
Petermichl, Stefanie ;
Reguera, Maria Carmen .
MATHEMATISCHE ANNALEN, 2010, 348 (01) :127-141